CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lark, Murray"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Testing the utility of structure from motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion
    (Wiley, 2017-03-08) Glendell, Miriam; McShane, Gareth; Farrow, Luke; James, Mike R.; Quinton, John Norman; Anderson, Karen; Evans, Martin; Benaud, Pia; Rawlins, Barry G.; Morgan, David; Jones, Lee; Kirkham, Matthew; DeBell, Leon; Quine, Timothy; Lark, Murray; Rickson, R. Jane; Brazier, Richard E.
    Quantifying the extent of soil erosion at a fine spatial resolution can be time consuming and costly; however, proximal remote sensing approaches to collect topographic data present an emerging alternative for quantifying soil volumes lost via erosion. Herein we compare terrestrial laser scanning (TLS), and both aerial (UAV) and ground-based (GP) SfM derived topography. We compare the cost-effectiveness and accuracy of both SfM techniques to TLS for erosion gully surveying in upland landscapes, treating TLS as a benchmark. Further, we quantify volumetric soil loss estimates from upland gullies using digital surface models derived by each technique and subtracted from an interpolated pre-erosion surface. Soil loss estimates from UAV and GP SfM reconstructions were comparable to those from TLS, whereby the slopes of the relationship between all three techniques were not significantly different from 1:1 line. Only for the TLS to GP comparison the intercept was significantly different from zero, showing that GP is more capable of measuring the volumes of very small erosion features. In terms of cost-effectiveness in data collection and processing time, both UAV and GP were comparable with the TLS on a per-site basis (13.4 and 8.2 person-hours versus 13.4 for TLS); however GP was less suitable for surveying larger areas (127 person-hours per ha-1 versus 4.5 for UAV and 3.9 for TLS). Annual repeat surveys using GP were capable of detecting mean vertical erosion change on peaty soils. These first published estimates of whole gully erosion rates (0.077 m a-1) suggest that combined erosion rates on gully floors and walls are around three times the value of previous estimates, which largely characterise wind and rainsplash erosion of gully walls.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback