CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kumar Selvam, Praveen"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detect and avoid considerations for safe sUAS operations in urban environments
    (IEEE, 2021-11-15) Celdran Martinez, Victor; Ince, Bilkan; Kumar Selvam, Praveen; Petrunin, Ivan; Seo, Min-Guk; Anastassacos, Edward; Royall, Paul G.; Cole, Adrian; Tsourdos, Antonios; Knorr, Sebastian
    Operations involving small Unmanned Aerial Systems (sUAS) in urban environments are occurring ever more frequently as recognized applications gain acceptance, and new use cases emerge, such as urban air mobility, medical deliveries, and support of emergency services. Higher demands in these operations and the requirement to access urban airspace present new challenges in sUAS operational safety. The presence of Detect and Avoid (DAA) capability of sUAS is one of the major requirements to its safe operation in urban environments according to the current legislation, such as the CAP 722 in the United Kingdom (UK). The platform or its operator proves a full awareness of all potential obstacles within the mission, maintains a safe distance from other airspace users, and, ultimately, performs Collision Avoidance (CA) maneuvers to avoid imminent impacts. Different missions for the defined scenarios are designed and performed within the simulation model in Software Tool Kit (STK) software environment, covering a wide range of practical cases. The acquired data supports assessment of feasibility and requirements to real-time processing. Analysis of the findings and simulation results leads to a holistic approach to implementation of sUAS operations in urban environments, focusing on extracting critical DAA capability for safe mission completion. The proposed approach forms a valuable asset for safe operations validation, enabling better evaluation of risk mitigation for sUAS urban operations and safety-focused design of the sensor payload and algorithms.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback