Browsing by Author "Kumar, Prashant"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Air quality and mental health: evidence, challenges and future directions(Cambridge University Press (CUP), 2023-07-05) Bhui, Kamaldeep; Newbury, Joanne B.; Latham, Rachel M.; Ucci, Marcella; Nasir, Zaheer A.; Turner, Briony; O'Leary, Catherine; Fisher, Helen L.; Marczylo, Emma; Douglas, Philippa; Stansfeld, Stephen; Jackson, Simon K.; Tyrrel, Sean; Rzhetsky, Andrey; Kinnersley, Rob; Kumar, Prashant; Duchaine, Caroline; Coulon, FredericBackground: Poor air quality is associated with poor health. Little attention is given to the complex array of environmental exposures and air pollutants that affect mental health during the life course. Aims: We gather interdisciplinary expertise and knowledge across the air pollution and mental health fields. We seek to propose future research priorities and how to address them. Method: Through a rapid narrative review, we summarise the key scientific findings, knowledge gaps and methodological challenges. Results: There is emerging evidence of associations between poor air quality, both indoors and outdoors, and poor mental health more generally, as well as specific mental disorders. Furthermore, pre-existing long-term conditions appear to deteriorate, requiring more healthcare. Evidence of critical periods for exposure among children and adolescents highlights the need for more longitudinal data as the basis of early preventive actions and policies. Particulate matter, including bioaerosols, are implicated, but form part of a complex exposome influenced by geography, deprivation, socioeconomic conditions and biological and individual vulnerabilities. Critical knowledge gaps need to be addressed to design interventions for mitigation and prevention, reflecting ever-changing sources of air pollution. The evidence base can inform and motivate multi-sector and interdisciplinary efforts of researchers, practitioners, policy makers, industry, community groups and campaigners to take informed action. Conclusions: There are knowledge gaps and a need for more research, for example, around bioaerosols exposure, indoor and outdoor pollution, urban design and impact on mental health over the life course.Item Open Access Air quality and mental illness: role of bioaerosols, causal mechanisms and research priorities(Royal College of Psychiatrists, 2024-09-19) Bhui, Kamaldeep; Ucci, Marcella; Kumar, Prashant; Jackson, Simon K; Whitby, Corinne; Colbeck, Ian; Pfrang, Christian; Nasir, Zaheer A; Coulon, FredericBackground: Poor air quality can both trigger and aggravate lung and heart conditions, as well as affecting child development. It can even lead to neurological and mental health problems. However, the precise mechanisms by which air pollution affect human health are not well understood. Aims: To promote interdisciplinary dialogue and better research based on a critical summary of evidence on air quality and health, with an emphasis on mental health, and to do so with a special focus on bioaerosols as a common but neglected air constituent. Method: A rapid narrative review and interdisciplinary expert consultation, as is recommended for a complex and rapidly changing field of research. Results: The research methods used to assess exposures and outcomes vary across different fields of study, resulting in a disconnect in bioaerosol and health research. We make recommendations to enhance the evidence base by standardising measures of exposure to both particulate matter in general and bioaerosols specifically. We present methods for assessing mental health and ideal designs. There is less research on bioaerosols, and we provide specific ways of measuring exposure to these. We suggest research designs for investigating causal mechanisms as important intermediate steps before undertaking larger-scale and definitive studies. Conclusions: We propose methods for exposure and outcome measurement, as well as optimal research designs to inform the development of standards for undertaking and reporting research and for future policy.Item Open Access Urban heat mitigation by green and blue infrastructure: drivers, effectiveness, and future needs(Elsevier, 2024-02-28) Kumar, Prashant; Debele, Sisay E.; Khalili, Soheila; Coulon, FredericThe combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change. Yet, the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure (GBGI), such as parks, wetlands, and engineered greening, which have the potential to effectively reduce summer air temperatures. Despite many reviews, the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear. This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits, identifies knowledge gaps, and proposes recommendations for their implementation to maximize their benefits. After screening 27,486 papers, 202 were reviewed, based on 51 GBGI types categorized under 10 main divisions. Certain GBGI (green walls, parks, street trees) have been well researched for their urban cooling capabilities. However, several other GBGI have received negligible (zoological garden, golf course, estuary) or minimal (private garden, allotment) attention. The most efficient air cooling was observed in botanical gardens (5.0 ± 3.5°C), wetlands (4.9 ± 3.2°C), green walls (4.1 ± 4.2°C), street trees (3.8 ± 3.1°C), and vegetated balconies (3.8 ± 2.7°C). Under changing climate conditions (2070–2100) with consideration of RCP8.5, there is a shift in climate subtypes, either within the same climate zone (e.g., Dfa to Dfb and Cfb to Cfa) or across other climate zones (e.g., Dfb [continental warm-summer humid] to BSk [dry, cold semi-arid] and Cwa [temperate] to Am [tropical]). These shifts may result in lower efficiency for the current GBGI in the future. Given the importance of multiple services, it is crucial to balance their functionality, cooling performance, and other related co-benefits when planning for the future GBGI. This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating, filling research gaps, and promoting community resilience.