CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Koidis, Anastasios"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A critical review of conventional and emerging technologies for the detection of contaminants, allergens and adulterants in plant-based milk alternatives
    (Elsevier, 2025) Karimi, Zahra; Campbell, Katrina; Kevei, Zoltan; Patriarca, Andrea; Koidis, Anastasios; Anastasiadi, Maria
    The increasing popularity of plant-based milk alternatives (PBMAs) necessitates effective safety and authentication measures to ensure food product integrity and maintain consumer trust. This review aims to offer a comprehensive overview of potential contaminants, allergens, and adulterants in PBMAs, and the analytical methodologies employed for their detection and quantitation. It details the advantages and limitations of widely employed testing techniques, such as chromatography, spectroscopy, immunoassays and PCR. In addition, it explores recent advancements in portable detection methods based on novel technologies such as CRISPR and biosensor systems that offer new opportunities for rapid and precise analysis. Despite these technological innovations, important challenges remain, particularly in optimizing sample preparation protocols and improving DNA-based methods efficiency. The integration of multiple detection strategies and the development of rapid, cost-effective analytical tools are critical steps towards enhancing both industry compliance and consumer confidence. Furthermore, green analytical methods — such as solvent-free extraction, AI-driven spectroscopy, and sustainable sample preparation techniques — pave the way toward eco-friendly and more efficient PBMA safety testing.
  • No Thumbnail Available
    ItemOpen Access
    Data "Detection of sugar syrup adulteration in honey using DNA barcoding"
    (Cranfield University, 2024-08-01) Dodd, Sophie; Anastasiadi, Maria; Karimi, Zahra; Koidis, Anastasios
    Honey is a valuable and nutritious food product, but it is at risk to fraudulent practices such as the addition of cheaper syrups including corn, rice, and sugar beet syrup. Honey authentication is of the utmost importance, but current methods are faced with challenges due to the large variations in natural honey composition (influenced by climate, seasons and bee foraging), or the incapability to detect certain types of plant syrups to confirm the adulterant used. Molecular methods such as DNA barcoding have shown great promise in identifying plant DNA sources in honey and could be applied to detect plant-based sugars used as adulterants. In this work DNA barcoding was successfully used to detect corn and rice syrup adulteration in spiked UK honey with novel DNA markers. Different levels of adulteration were simulated (1-30%) with a range of different syrup and honey types, where adulterated honey was clearly separated from natural honey even at 1% adulteration level. Moreover, the test was successful for multiple syrup types and effective on honeys with different compositions. These results demonstrated that DNA barcoding could be used as a sensitive and robust method to detect common sugar adulterants and confirm syrup species origin in honey, which can be applied alongside current screening methods to improve existing honey authentication tests. The datasets provided are the raw data from qPCR tests and HPLC analysis.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of sugar syrup adulteration in UK honey using DNA barcoding
    (Elsevier, 2025-01-01) Dodd, Sophie; Kevei, Zoltan; Karimi, Zahra; Parmar, Bhavna; Franklin, David; Koidis, Anastasios; Anastasiadi, Maria
    Honey is a valuable and nutritious food product, but it is at risk to fraudulent practices such as the addition of cheaper syrups including corn, rice, and sugar beet syrup. Honey authentication is of the utmost importance, but current methods are faced with challenges due to the large variations in natural honey composition (influenced by climate, seasons and bee foraging), or the incapability to detect certain types of plant syrups to confirm the adulterant used. Molecular methods such as DNA barcoding have shown great promise in identifying plant DNA sources in honey and could be applied to detect plant-based sugars used as adulterants. In this work DNA barcoding was successfully used to detect corn and rice syrup adulteration in spiked UK honey with novel DNA markers. Different levels of adulteration were simulated (1 – 30%) with a range of different syrup and honey types, where adulterated honey was clearly separated from natural honey even at 1% adulteration level. Moreover, the test was successful for multiple syrup types and effective on honeys with different compositions. These results demonstrated that DNA barcoding could be used as a sensitive and robust method to detect common sugar adulterants and confirm syrup species origin in honey, which can be applied alongside current screening methods to improve existing honey authentication tests.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback