CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Knight, S. M."

Now showing 1 - 5 of 5
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Developing strategies for spatially variable nitrogen application in cereals II: wheat
    (Elsevier , 2003-04) Welsh, J. P.; Wood, G. A.; Godwin, R. J.; Taylor, John C.; Earl, R.; Blackmore, S.; Knight, S. M.
    For precision agriculture to provide both economic and environmental benefits over conventional farm practice, management strategies must be developed to accommodate the spatial variability in crop performance that occurs within fields. Experiments were established in crops of winter barley (Hordeum vulgare L.) over three seasons. The aim of which was to evaluate a set of variable rate nitrogen strategies and examining the spatial variation in crop response to applied N. The optimum N application rate varied from 90 to in excess of 160 kg [N] ha−1 in different parts of the field, which supports the case for applying spatially variable rates of N. This, however, is highly dependent on seasonal variations, e.g. the quantity and distribution of rainfall and the effect that this has on soil moisture deficits and crop growth. Estimates of yield potential, produced from either historic yield data or shoot density maps derived from airborne digital photographic images, were used to divide experimental strips into management zones. These zones were then managed according to two N application strategies. The results from the historic yield approach, based on 3 yr of yield data, were inconsistent, and it was concluded that that this approach, which is currently the most practical commercial system, does not provide a suitable basis for varying N rates. The shoot density approach, however, offered considerably greater potential as it takes account of variation in the current crop. Using this approach, it was found that applying additional N to areas with a low shoot population and reducing N to areas with a high shoot population resulted in an average strategy benefit of up to 0·36 t ha−1 compared with standard farm practice.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Developing Strategies for spatially variable nitrogen application in cereals, I: Winter barley
    (Elsevier , 2003-04) Welsh, J. P.; Wood, G. A.; Godwin, R. J.; Taylor, John C.; Earl, R.; Blackmore, S.; Knight, S. M.
    For precision agriculture to provide both economic and environmental benefits over conventional farm practice, management strategies must be developed to accommodate the spatial variability in crop performance that occurs within fields. Experiments were established in crops of winter barley (Hordeum vulgare L.) over three seasons. The aim of which was to evaluate a set of variable rate nitrogen strategies and examining the spatial variation in crop response to applied N. The optimum N application rate varied from 90 to in excess of 160 kg [N] ha−1 in different parts of the field, which supports the case for applying spatially variable rates of N. This, however, is highly dependent on seasonal variations, e.g. the quantity and distribution of rainfall and the effect that this has on soil moisture deficits and crop growth. Estimates of yield potential, produced from either historic yield data or shoot density maps derived from airborne digital photographic images, were used to divide experimental strips into management zones. These zones were then managed according to two N application strategies. The results from the historic yield approach, based on 3 yr of yield data, were inconsistent, and it was concluded that that this approach, which is currently the most practical commercial system, does not provide a suitable basis for varying N rates. The shoot density approach, however, offered considerably greater potential as it takes account of variation in the current crop. Using this approach, it was found that applying additional N to areas with a low shoot population and reducing N to areas with a high shoot population resulted in an average strategy benefit of up to 0·36 t ha−1 compared with standard farm practice.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An Economic analysis of the potential for precision farming in UK cereal production
    (Elsevier , 2003-04) Godwin, R. J.; Richards, Terence E.; Wood, G. A.; Welsh, J. P.; Knight, S. M.
    The results from alternative spatial nitrogen application studies are analysed in economic terms and compared to the costs of precision farming hardware, software and other services for cereal crops in the UK. At current prices, the benefits of variable rate application of nitrogen exceed the returns from a uniform application by an average of £22 ha−1 The cost of the precision farming systems range from £5 to £18 ha−1 depending upon the system chosen for an area of 250 ha. The benefits outweigh the associated costs for cereal farms in excess of 80 ha for the lowest price system to 200–300 ha for the more sophisticated systems. The scale of benefits obtained depends upon the magnitude of the response to the treatment and the proportion of the field that will respond. To be cost effective, a farmed area of 250 ha of cereals, where 30% of the area will respond to variable treatment, requires an increase in crop yield in the responsive areas of between 0·25 and 1.00 t ha−1 (at £65 t−1) for the basic and most expensive precision farming systems, respectively.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Real-time measures of canopy size as a basis for spatially varying nitrogen applications to winter wheat sown at different seed rates
    (Elsevier, 2003-04) Wood, G. A.; Welsh, J. P.; Godwin, R. J.; Taylor, John C.; Earl, R.; Knight, S. M.
    Experiments at two sites growing winter wheat show that in order to manage a wheat canopy more effectively, the use of specific remote sensing techniques both to monitor crop canopy expansion, and to determine variable nitrogen applications at key timings is required. Variations in seed rate were used to achieve a range of initial crop structures, and treatments were compared to standard farm practice. In the first year, the effect of varying seed rate (250, 350 and 450 seeds m−2) on crop structure, yield components and grain yield, was compared to the effects of underlying spatial variation. Plant populations increased up to the highest rate, but shoot and ear populations peaked at 350 seeds m−2. Compensation through an increased number of grains per ear and thousand grain weight resulted in the highest yield and gross margin at the lowest seed rate. In later experiments, the range of seed rates was extended to include 150 seeds m−2, each sown in 24 m wide strips split into 12 m wide halves. One half received a standard nitrogen dose of 200 kg [N] ha−1, the other a variable treatment based on near ‘real-time’ maps of crop growth. Both were split into three applications, targeted at mid-late tillering (early March), growth stages GS30-31 (mid April) and GS33 (mid May). At each timing, calibrated aerial digital photography was used to assess crop growth in terms of shoot population at tillering, and canopy green area index at GS30-31 and GS33. These were compared to current agronomic guidelines. Application rates were then varied below or above the planned amount where growth was above- or below-target, respectively. In the first field, total nitrogen doses in the variable treatments ranged from 188 to 243 kg [N] ha−1, which gave higher yields than the standards at all seed rates in the range 0·36–0·78 t ha−1 and gross margins of £17 to £60 ha−1. In the second field, variable treatments ranged from 135 to 197 kg [N] ha−1 that resulted in lower yields of −0·32 to +0·30 t ha−1. However, in three out of the four seed rates, variable treatments produced higher gross margins than the standard, which ranged from £2 to £20 ha−1. In both fields, the greatest benefits were obtained where the total amount of applied nitrogen was similar to the standard, but was applied variably rather than uniformly along the strips. Simple nitrogen balance calculations have shown that variable application of nitrogen can have an overall effect on reducing the nitrogen surplus by one-third.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Soil Factors and their Influence on Within-Field Crop Variability, I: Field Observation of Soil Variation
    (Elsevier Science B.V., Amsterdam, 2003-04-01T00:00:00Z) Earl, R.; Taylor, John C.; Wood, G. A.; Bradley, I.; James, Iain T.; Waine, Toby W.; Welsh, J. P.; Godwin, R. J.; Knight, S. M.
    A fundamental component of adopting the concept of precision farming in practice is the ability to measure spatial variation in soil factors and assess the influence of this on crop variability in order to apply appropriate management strategies. The aim of this study was to appraise potential methods for measuring spatial variability in soil type, nutrient status and physical properties in practical farming situations. Five fields that are representative of more than 30% of soils used for arable production in England and Wales were selected for use as case studies. Maps of soil type were generated from a conventional hand auger survey on a 100 m grid and the excavation of targeted soil profile pits. These were compared with those refined using a mechanised soil coring device and scans of electromagnetic inductance (EMI) carried out while the soil could reasonably be considered to be at, or near, field capacity moisture content. In addition, soil sampling for nutrient analyses was conducted on a 50 m grid to examine the spatial variation in nutrient status. Conventional methods for sampling soil were found to be appropriate for identifying soil types at specific locations within the field sites, however, they were time- consuming to perform which placed an economic and therefore a practical limitation on the sampling density possible. The resulting data were considered to be too sparse for demarcating soil type boundaries for use in the context of precision farming. The location of soil boundaries were refined by using the mechanised soil corer, however, the limitation of this was found to be the time required to analyse the soil cores produced. Maps of soil variation generated from EMI scans conducted at field capacity appear to reflect the underlying variation in soil type observed in maps generated using the mechanised soil corer. and, therefore, this approach has potential as a cost-effective, data- rich, surrogate for measures of soil variability. Results from analyses of soil samples for measurement of nutrient status indicated that whilst there was considerable variation in macro- and micro-nutrient levels in each field, with the exception of pH, these levels were above commonly accepted agronomic limits. Results did however demonstrate the potential for addressing variation in critical factors such as pH at specific locations, however, there is a need to develop protocols for targeting sampling in order to reduce costs.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback