CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kim, Sukkeun"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A review of Bayes filters with machine learning techniques and their applications
    (Elsevier, 2025-02-01) Kim, Sukkeun; Petrunin, Ivan; Shin, Hyo-Sang
    A Bayes filter is a widely used estimation algorithm, but it has inherent limitations. Performance can degrade when the dynamics are highly nonlinear or when the probability distribution of the state is unknown. To mitigate these issues, machine learning (ML) techniques have been incorporated into many Bayes filters, due to their advantage of being able to map between the input and the output without explicit instructions. In this review, we reviewed 90 papers that proposed the use of ML techniques with Bayes filters to improve estimation performance. This review provides an overview of Bayes filters with ML techniques, categorised according to the role of ML, remaining challenges and research gaps. In the concluding section of this review, we point out directions for future research.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    AFJPDA: a multiclass multi-object tracking with appearance feature-aided joint probabilistic data association
    (AIAA, 2024-01-02) Kim, Sukkeun; Petrunin, Ivan; Shin, Hyo-Sang
    This study addresses a multiclass multi-object tracking problem in consideration of clutters in the environment. To alleviate issues with clutters, we propose the appearance feature-aided joint probabilistic data association filter. We also implemented simple adaptive gating logic for the computational efficiency and track maintenance logic, which can save the lost track for re-association after occlusion or missed detection. The performance of the proposed algorithm was evaluated against a state-of-the-art multi-object tracking algorithm using both multiclass multi-object simulation and real-world aerial images. The evaluation results indicate significant performance improvement of the proposed method against the benchmark state-of-the-art algorithm, especially in terms of reduction in identity switches and fragmentation.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A review of Kalman filter with artificial intelligence techniques
    (IEEE, 2022-05-12) Kim, Sukkeun; Petrunin, Ivan; Shin, Hyosang
    Kalman filter (KF) is a widely used estimation algorithm for many applications. However, in many cases, it is not easy to estimate the exact state of the system due to many reasons such as an imperfect mathematical model, dynamic environments, or inaccurate parameters of KF. Artificial intelligence (AI) techniques have been applied to many estimation algorithms thanks to the advantage of AI techniques that have the ability of mapping between the input and the output, the so-called "black box". In this paper, we found and reviewed 55 papers that proposed KF with AI techniques to improve its performance. Based on the review, we categorised papers into four groups according to the role of AI as follows: 1) Methods tuning parameters of KF, 2) Methods compensating errors in KF, 3) Methods updating state vector or measurements of KF, and 4) Methods estimating pseudo-measurements of KF. In the concluding section of this paper, we pointed out the directions for future research that suggestion to focus on more research for combining the categorised groups. In addition, we presented the suggestion of beneficial approaches for representative applications.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback