Browsing by Author "Khan, Sohaib Zia"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Open Access Effect of carbon fiber winding layer on torsional characteristics of filament wound composite shafts(Springer Verlag, 2018-03-21) Tariq, Mateen; Nisar, Salman; Shah, Aqueel; Mairaj, Tariq; Akbar, Sohaib; Khan, Muhammad Ali; Khan, Sohaib ZiaComposite materials are promising candidates as structural materials and substituting metals in extensive applications. Shafts are used in aerospace and automotive structures and hence replacing conventional shafts with composite material shafts is a viable option. Hollow shafts can be manufactured using filament winding technology employing hoop and helix winding layers. Filament winding technology offers several advantages such as continuous filaments through structure and capability for continuous manufacturing. Previously researchers have investigated composite shafts; however, this research elaborates the significance of type of winding layer on torsional characteristics. This paper reports the effects of carbon fiber winding layer on torsional characteristics of filament wound composite hollow shafts. Shafts were manufactured using filament winding technology with continuous carbon fiber roving and epoxy matrix material and tested using the torsional testing machine. The finite element (FE) simulations have been carried out with a general purpose commercial FE code, ABAQUS, to demonstrate shafts in torsional loading. The results revealed that values from torsional test correlate with developed finite element model. It was concluded that helix winding layer offers high hardness and more resistance to torsional forces as compared to hoop winding layer in filament wound composite shafts.Item Open Access Effect of hybrid reinforcement on the performance of filament wound hollow shaft(Elsevier, 2017-09-06) Tariq, Mateen; Nisar, Salman; Shah, Aqueel; Akbar, Sohaib; Khan, Muhammad Ali; Khan, Sohaib ZiaPrevious studies have shown that composite materials can replace metals as the material of construction in shafts. Composite material shafts are normally made up of polymer matrix composites as they are easy to design and economical to manufacture. This paper investigates the effect of hybrid reinforcement on the performance of filament wound hollow shaft. The hybrid shafts are composed of hybrid filaments including a combination of carbon, glass and aramid fibers. The initial stage involved development and verification of FEA model in order to establish grounds for further experimentation. Afterwards, a design of experiments model was established and experiments were performed using FEA. After the design phase, the shafts were manufactured using filament winding processing technique employing suitable matrix and reinforcement systems. Lastly, the shafts were tested for torsional characteristics, hardness, density and chemical reactivity. The results showed that carbon fiber reinforcement shows best results in terms of torsional characteristics. In terms of chemical reactivity, carbon-glass hybrid reinforcement exhibited minimum degradation. Furthermore, it was also found that hybrid reinforcements containing carbon-aramid fibers showed better results in terms of density and surface hardness.Item Open Access Gear misalignment diagnosis using statistical features of vibration and airborne sound spectrums(Elsevier, 2019-05-31) Khan, Muhammad Ali; Shahid, Muhammad Atayyab; Ahmed, Syed Adil; Khan, Sohaib Zia; Khan, Kamran Ahmed; Ali, Syed Asad; Tariq, MuhammadFailure in gears, transmission shafts and drivetrains is very critical in machineries such as aircrafts and helicopters. Real time condition monitoring of these components, using predictive maintenance techniques is hence a proactive task. For effective power transmission and maximum service life, gears are required to remain in prefect alignment but this task is just beyond the bounds of possibility. These components are flexible, thus even if perfect alignment is achieved, random dynamic forces can cause shafts to bend causing gear misalignments. This paper investigates the change in energy levels and statistical parameters including Kurtosis and Skewness of gear mesh vibration and airborne sound signals when subjected to lateral and angular shaft misalignments. Novel regression models are proposed after validation that can be used to predict the degree and type of shaft misalignment, provided the relative change in signal RMS from an aligned condition to any misaligned condition is known.Item Open Access Low-velocity impact characterization of fiber-reinforced composites with hygrothermal effect(ASTM, 2018-06-19) Zai, Behzad Ahmed; Khan, Muhammad; Park, M. K.; Shahzad, Majid; Shahzad, M. A.; Salman, Nisar; Khan, Sohaib Zia; Khan, Kamran Ahmed; Shah, AqueelIn this article, low-velocity impact characteristics of UHN125C carbon fiber/epoxy composite, including unidirectional (0°), cross-directional (0°/90°), and quasi-isotropic layups, were experimentally measured. The effect of the fiber orientation angle and stacking sequences on impact force and induced strain were measured via an instrumented drop-weight apparatus with special concern for the moisture absorption effect. Dried specimens were immersed in distilled water for a certain period of time to absorb water for intermediate and saturated moisture content. It was observed that the impulse was reduced with the increase in moisture content; on the other hand, strain increased with moisture, as measured by DBU-120A strain-indicating software (MADSER Corp., El Paso, TX). Impact damage is widely recognized as one of the most detrimental damage forms in composite laminates because it dissipates the incident energy by a combination of matrix damage, fiber fracture, and fiber-matrix debonding. Therefore, it is extremely important to know the impact strength of a structure, especially for applications in industries such as aerospace, ship design, and some other commercial applications. The use of composite materials in engineering applications is increasing rapidly because they have higher strength-to-weight ratios than metals. The strength, stiffness, and, eventually, the life of composite materials are affected more than conventional materials by the presence of moisture and temperature. Thus, it is necessary to analyze the response of composites in a hydrothermal environment.Item Open Access A novel test configuration design method for inverse identification of in-plane moduli of a composite plate under the PFEUM framework(Wiley, 2018-06-11) Siddiqui, Muhammad Zeeshan; Khan, Sohaib ZiaWe propose a novel sensitivity based approach that predicts and explains the accuracy of material parameter identification for a composite plate using the Projected Finite Element Update Method. A typical experiment using the Projected Finite Element Update Method technique involves a plate specimen held at 3 or 4 supports and bent under the application of a point load. Two‐Dimensional Digital Image Correlation is used to measure the pseudo displacements resulting from the projection of out‐of‐plane deflection of the plate onto the image plane. A cost function relating the projected numerical and experimental displacement fields is then minimised to obtain the material parameters. It is shown that the contribution of a specific material parameter in the observed displacement field influences the accuracy of its identification. The contributions from material parameters are first quantified in terms of sensitivity criterion that may be tailored by changing the elements of test configuration such as location of supports, the load application point, and the specimen geometry. Several test configurations are designed by maximising the sensitivities corresponding to individual material parameters. The relevance of proposed sensitivity criterion in these configurations is then validated through material identification in simulated experiments with added Gaussian noise. Finally, a thin CFRP plate is tested under these configurations to demonstrate the practical use of this approach. The proposed approach helps in robust estimation of the in‐plane elastic moduli from a bent composite plate with a simple Two‐Dimensional Digital Image Correlation setup without requiring measurement of the actual plate deflection or curvatures.Item Open Access A projected finite element update method for inverse identification of material constitutive parameters in transversely isotropic laminates(Springer, 2017-03-09) Siddiqui, Muhammad Zeeshan; Khan, Sohaib Zia; Khan, Muhammad Ali; Khan, Kamran Ahmed; Shahzad, Majid; Nisar, Salman; Noman, DanishIn this paper, a novel application of Finite Element Update Method (FEUM) is proposed for the inverse identification of material constitutive parameters in transversely isotropic laminates. Two-dimensional Digital Image Correlation (2D–DIC) is used for full-field measurements which is required for the identification process. Instead of measuring the in-plane displacements, which is a well-known application of 2D–DIC, we seek to measure the pseudo-displacements resulting from out-of-plane (towards camera) deflection of plate under a point load. These pseudo-displacements are basically the perspective projection of the three dimensional displacement fields on the image-plane of the image acquisition system. The cost function in this method is defined in terms of these projections instead of the true displacements – and hence the name Projected Finite Element Update Method (PFEUM). In this article, identification of in-plane elastic moduli of Carbon Fiber Reinforced Plastic (CFRP) plate has been performed using plate bending experiments which show pre-dominantly out-of-plane deflection with little contribution from the in-plane displacements. Identification results are validated by direct experimental measurements of the unknown elastic constants as well as theoretical estimates based on volume ratio of constituents. The results show good conformance between estimated and target values for at least three material parameters namely E1, E2 and G12. Effects of experimental noise on parameter estimates has also been evaluated to explain the observed deviation in estimated parameters with current test configuration.Item Open Access Simulation of blended nonlinear hydrodynamics forces using radial basis function in uniform moving frame(Elsevier, 2020-02-01) Khalid, Muhammed S.; Nisar, Salman; Khan, Sohaib Zia; Khan, Muhammad Ali; Troesch, Armin W.This study focuses on the development of a blended technique in moving frame which encompasses nonlinearities and real time simulation of the vital early design parameters using combined exact nonlinear and quasi-nonlinear forcing terms. Generally, a full three-dimensional problem needs to be solved for the precise forward speed correction. However, in this paper the forward speed end corrections are calculated by converting the two dimensional velocity potential into a three dimensional mathematical function using radial basis function then partial differentiation is performed with respect to the longitudinal direction. The difference between the forward speed correction used for time simulation in the blended method and the strip-theory in the frequency domain has been explained. The use of radial basis functions for the estimation of quasi-nonlinear combined radiation and diffraction pressures in moving frame and their conversion between two and three dimensions has been demonstrated and validated experimentally.