CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Khaleque, Tasnuva"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Data underpinning the paper: 'Development and testing of carbonaceous tin-based solder achieving unprecedented joint performance Item'
    (Cranfield University, 2021-06-21 12:53) Hawi, Sara; Gharavian, Somayeh; Burda, Marek; Goel, Saurav; Lotfian, Saeid; Khaleque, Tasnuva; Yazdani Nezhad, Hamed
    The paper shows that the suitable addition of carbon nanomaterials to a tin-based solder material matrix results in two fold strength of soldered joints.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of carbonaceous tin-based solder composite achieving unprecedented joint performance
    (Springer, 2021-12-30) Hawi, Sara; Gharavian, Somayeh; Burda, Marek; Goel, Saurav; Lotfan, Saeid; Khaleque, Tasnuva; Yazdani Nezhad, Hamed
    Weight reduction and improved strength are two common engineering goals in the joining sector to benefit transport, aerospace, and nuclear industries amongst others. Here, in this paper, we show that the suitable addition of carbon nanomaterials to a tin-based solder material matrix (C-Solder® supplied by Cametics Ltd.) results in two-fold strength of soldered composite joints. Single-lap shear joint experiments were conducted on soldered aluminium alloy (6082 T6) substrates. The soldering material was reinforced in different mix ratios by carbon black, graphene, and single-walled carbon nanotubes (SWCNT) and benchmarked against the pristine C-solder®. The material characterisation was performed using Vickers micro-indentation, differential scanning calorimetry and nano-indentation, whereas functional testing involved mechanical shear tests using single-lap aluminium soldered joints and creep tests. The hardness was observed to improve in all cases except for the 0.01 wt.% graphene reinforced solders, with 5% and 4% improvements in 0.05 carbon black and SWCNT reinforced solders, respectively. The maximum creep indentation was noted to improve for all solder categories with maximum 11% and 8% improvements in 0.05 wt.% carbon black and SWCNT reinforced ones. In general, the 0.05 wt.% nanomaterial reinforced solders promoted progressive cohesion failure in the joints as opposed to instantaneous fully de-bonded failure observed in pristine soldered joints, which suggests potential application in high-performance structures where no service load induced adhesion failure is permissible (e.g. aerospace assemblies). The novel innovation developed here will pave the way to achieving high-performance solder joining without carrying out extensive surface preparations.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Strain self-sensing tailoring in functionalised carbon nanotubes/epoxy nanocomposites in response to electrical resistance change measurement
    (SSRN, 2020-10-26) An, Donglan; Nourry, Jim; Gharavian, Somayeh; Thakur, Vijay Kumar; Aria, Adrianus Indrat; Durazo-Cardenas, Isidro; Khaleque, Tasnuva; Nezhad, Hamed Yazdani
    Carbon nanotubes (CNTs) are inherently multifunctional, conductive and possess piezo-resistive characteristics. Aiming at the multi-functionality of materials, nanocomposites made of epoxy resin with embedded CNTs are a promising solution for strain self-sensing applications. A critical parameter to achieve repeatable and reliable measure is the CNTs dispersion state in the resin. This study investigated the effect of CNTs concentration (0.01 wt% and 0.1 wt%), with different loading of surfactant Triton X-100, (0.0%, 0.2%, 0.5% and 1.0%) on strain sensing in terms of sensitivity and linearity based on electrical resistance data. The CNTs were synthesised directly using an injection floating catalyst chemical vapor deposition (ICCVD) process and their quality was characterised by Raman spectroscopy and scanning electron microscopy. Only the epoxy modified with 0.1 wt% CNTs exhibited sufficient piezo-resistivity for the resistance measurements, and those with 0.01 wt% CNTs did not show sufficiently measurable conductivity so were excluded in our study, since their CNTs were highly entangled, and conductive network failed to be established. It was observed that, with 0.1 wt% CNTs, adding 0.5% content of the surfactant improved gauge factor. With more content of the surfactant (1.0 %), surprisingly, we observed a drop of gauge factor by the order of two. Therefore, by comparing the conductivity change between 1.0% and 0.5% surfactant, we postulated that the relatively high content surfactant has reached critical micelle concentration, and negatively affects CNTs dispersion state. The research presented in this article shows that moderate content of surfactant could improve piezo-resistivity gauge factor while excessive surfactant could cause adverse effect.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tailoring of thermo-mechanical properties of hybrid composite-metal bonded joints
    (MDPI, 2021-01-06) Khaleque, Tasnuva; Zhang, Xiaolong; Thakur, Vijay Kumar; Aria, Adrianus Indrat; Nezhad, Hamed Yazdani
    Metallic substrates and polymer adhesive in composite-metal joints have a relatively large coefficient of thermal expansion (CTE) mismatch, which is a barrier in the growing market of electric vehicles and their battery structures. It is reported that adding carbon nanotubes (CNTs) to the adhesive reduces the CTE of the CNT-enhanced polymer adhesive multi-material system, and therefore when used in adhesively bonded joints it would, theoretically, result in low CTE mismatch in the joint system. The current article presents the influence of two specific mass ratios of CNTs on the CTE of the enhanced polymer. It was observed that the addition of 1.0 wt% and 2.68 wt% of multi-walled CNTs (MWCNTs) decreased the CTE of the polymer adhesive from 7.5×10−5 °C−1 (pristine level) to 5.87×10−5 °C−1 and 4.43×10−5 °C−1, respectively, by 22% and 41% reductions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback