Browsing by Author "Keating, Ciara"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Anaerobic microbial core for municipal wastewater treatment — the sustainable platform for resource recovery(Elsevier, 2025-08-01) Conall Holohan, B.; Trego, Anna; Keating, Ciara; Bressani-Ribeiro, Thiago; Chernicharo, Carlos L.; Daigger, Glen; Galdi, Stephen M.; Knörle, Ulrich; Paissoni, Eleonora; Robles, Angel; Rogalla, Frank; Shin, Chungheon; Soares, Ana; Smith, Adam L.; Szczuka, Aleksandra; Hughes, Dermot; O’Flaherty, VincentThe requirement for carbon neutrality and bioresource recovery has shifted our views on water treatment from health and pollution avoidance to one of sustainability with water and nutrient circularity. Despite progress, the current process of wastewater treatment is linear, based on core aerobic microbiology, which is unlikely to be carbon neutral due to its large use of energy and production of waste sludge. Here, we outline a shift from aerobic to anaerobic microbiology at the core of wastewater treatment and resource recovery, illustrating the state-of-the-art technologies available for this paradigm shift. Anaerobic metabolism primarily offers the benefit of minimal energy input (up to 50% reduction) and minimal biomass production, resulting in up to 95% less waste sludge compared with aerobic treatment, which is increasingly attractive, given dialogue surrounding emerging contaminants in biosolids. Recent innovative research solutions have made ambient (mainstream) anaerobic treatment a ready substitute for the aerobic processes for municipal wastewater in temperate regions. Moreover, utilising anaerobic treatment as the core carbon removal step allows for more biological downstream resource recovery with several opportunities to couple the process with (anaerobic) nitrogen and phosphorus recovery, namely, potential mainstream anaerobic ammonium oxidation (anammox) and methane oxidation (N-DAMO). Furthermore, these technologies can be mixed and matched with membranes and ion-exchange systems, high-value biochemical production, and/or water reuse installations. As such, we propose the reconfiguration of the wastewater treatment plant of the futurewith anaerobic microbiology. Mainstream anaerobic treatment at the core of a truly sustainable platform for modern municipal wastewater treatment, facilitating circular economy and net-zero carbon goals.Item Open Access Molecular insights informing factors affecting low temperature anaerobic applications: diversity, collated core microbiomes and complexity stability relationships in LCFA-fed systems(Elsevier, 2023-03-02) Singh, Suniti; Keating, Ciara; Ijaz, Umer Zeeshan; Hassard, FrancisFats, oil and grease, and their hydrolyzed counterparts-long chain fatty acids (LCFA) make up a large fraction of numerous wastewaters and are challenging to degrade anaerobically, more so, in low temperature anaerobic digestion (LtAD) systems. Herein, we perform a comparative analysis of publicly available Illumina 16S rRNA datasets generated from LCFA-degrading anaerobic microbiomes at low temperatures (10 and 20 °C) to comprehend the factors affecting microbial community dynamics. The various factors considered were the inoculum, substrate and operational characteristics, the reactor operation mode and reactor configuration, and the type of nucleic acid sequenced. We found that LCFA-degrading anaerobic microbiomes were differentiated primarily by inoculum characteristics (inoculum source and morphology) in comparison to the other factors tested. Inoculum characteristics prominently shaped the species richness, species evenness and beta-diversity patterns in the microbiomes even after long term operation of continuous reactors up to 150 days, implying the choice of inoculum needs careful consideration. The generalised additive models represented through beta diversity contour plots revealed that psychrophilic bacteria RBG-13-54-9 from family Anaerolineae, and taxa WCHB1–41 and Williamwhitmania were highly abundant in LCFA-fed microbial niches, suggesting their role in anaerobic treatment of LCFAs at low temperatures of 10–20 °C. Overall, we showed that the following bacterial genera: uncultured Propionibacteriaceae, Longilinea, Christensenellaceae R7 group, Lactivibrio, candidatus Caldatribacterium, Aminicenantales, Syntrophus, Syntrophomonas, Smithella, RBG-13-54-9, WCHB1–41, Trichococcus, Proteiniclasticum, SBR1031, Lutibacter and Lentimicrobium have prominent roles in LtAD of LCFA-rich wastewaters at 10–20 °C. This study provides molecular insights of anaerobic LCFA degradation under low temperatures from collated datasets and will aid in improving LtAD systems for treating LCFA-rich wastewaters.