CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kappos, E."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    State of energy estimation in electric propulsion systems with lithium-sulfur batteries
    (Institution of Engineering and Technology (IET), 2020-12-03) Munisamy, Srinivasan; Auger, Daniel J.; Fotouhi, Abbas; Hawkes, B.; Kappos, E.
    Lithium-Sulfur (Li-S) batteries are an emerging and appealing electrical energy storage technology. The literature on the Stateof- charge (SoC) estimation of Li-S is readily available. In real-world, battery operated vehicles and equipment need to monitor the electrical energy. This paper focuses on State-of-Eneergy (SoE) estimation of Li-S battery based electric propulsion system. This paper bridges literature gap of the SoE estimation of Li-S battery. While comparing mathematically, the definition of the SoC and SoE batteries are different. Reviewing the SoC estimation, this paper compares the SoC and SoE estimation for same data set. The challenges in Li-S SoC and SoE estimation include battery modelling and time-varying parameters and nonlinear voltage measurement, which has deeply skewed high-plateau and flatted low-plateau characteristics. Modelling Li-S battery as a Thevenin’s equivalent circuit network (ECN), the battery parameters are estimated using Predict Error Minimization (PEM) approach. For estimate SoC and SoE, the extended Kalman filter (EKF) is used. Since the parameters are high sensitive to battery current, the estimators use parameters obtained by polynomial fitting model. A simple switching logic based on SoCmeasurement voltage is used to join the high- and low-plateau. The degree of observability analysis is used to investigate the performance of SoE estimation by the EKF. Using experiment test data, simulation results demonstrate the performance of both SoC and SoE estimators. Results show that the SoE estimation is as close to the SoC estimation

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback