CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Joly, R. B."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Gas-turbine diagnostics using artificial neural-networks for a high bypass ratio military turbofan engine
    (Elsevier Science B.V., Amsterdam., 2004-08-01T00:00:00Z) Joly, R. B.; Ogaji, S. O. T.; Singh, R.; Probert, S. D.
    The Tristar aircraft, operated by the Royal Air Force, fly many thousands of hours per year in the transport and air-to-air refuelling roles. A large amount of engine data is recorded for each of the Rolls-Royce RB211-524B4 engines: it is used to aid the maintenance process. Data are also generated during test-bed engine ground-runs after repair and overhaul. In order to use recorded engine data more effectively, this paper assesses the feasibility of a pro-active engine diagnostic-tool using artificial neural networks (ANNs). Engine-health monitoring is described and the theory behind an ANN is described. An engine diagnostic structure is proposed using several ANNs. The top level distinguishes between single-component faults (SCFs) and double-component faults (DCFs). The middle-level class includes components, or component pairs, which are faulty. The bottom level estimates the values of the engine-independent parameters, for each engine component, based on a set of engine data using dependent parameters. The DCF results presented in this paper illustrate the potential for ANNs as diagnostic tools. However, there are also a number of features of ANN applications that are user-defined: ANN designs; the number of training epochs used; the training function employed; the method of performance assessment; and the degree of deterioration for each engine-component's performance parameter.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback