Browsing by Author "Jiao, Zongxia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access An electromagnetic wearable 3-DoF resonance human body motion energy harvester using ferrofluid as a lubricant(Elsevier, 2017-04-22) Wu, Shuai; Luk, Patrick Chi-Kwong; Li, Chunfang; Zhao, Xiangyu; Jiao, Zongxia; Shang, YaoxingWearable energy harvester offers clean and continuous power for wearable sensors or devices, and plays an important role in a wide range of applications such as the health monitoring and motion track. In this study, we investigate a small electromagnetic resonance wearable kinetic energy harvester. It consists of a permanent magnet (PM) supported by two elastic strings within a rectangular box form a 3-degree-of-freedom (3-DoF) vibrator. Copper windings are attached to the outer surface of the box to generate electrical energy when the PM is forced to vibrate. To minimize any frictional losses, ferrofluid is used such that the poles of PM are cushioned by the ferrofluid, to the effect that the PM will not touch the inner of the box. Simulation results show that the ferrofluid can keep the PM ‘contactless’ from the box even subject to 10 times gravity acceleration. A prototype is built and tested under different loading conditions. Resistance load experimental results indicate the proposed harvester can generate 1.11.1 mW in walking condition and 2.282.28 mW in running condition. An energy storage circuit is employed and the energy storage experimental results show that the average storage power during walking and running conditions are 0.0140.014 mW and 0.1490.149 mW respectively. It is shown that the developed harvester can be readily attached on a shoe to offer continuous power supply for wearable sensors and devices.Item Open Access Enhanced bandwidth nonlinear resonance electromagnetic human motion energy harvester using magnetic-springs and ferrofluid(IEEE, 2019-02-11) Li, Chungfang; Wu, Shuai; Luk, Patrick Chi-Kwong; Gu, Min; Jiao, ZongxiaAn enhanced bandwidth nonlinear resonant electromagnetic energy harvester has been designed to harness low frequency energy from basic human motion. Some vertical stacked cylindrical permanent magnets (PMs) constitute the inertial mass of the proposed harvester, which is suspended axially by two magnetic-springs and circumferentially by ferrofluid within a carbon fiber tube. In order to widen the frequency band and improve harvesting efficiency, two PMs are respectively fixed on the two end caps of the carbon fiber tube, so as to form two magnetic-springs with variable stiffness by cooperating with the PM stack. The self-assembled ferrofluid around the PM stack acts as its bearing system to minimize any friction during its movement. Copper wire are wrapped outside the tube to form the armature winding. The stiffness characteristic of the magnetic-springs and the optimum equilibrium position and number of windings have been determined by finite element method (FEM) analysis. As a proof of concept, a portable prototype of the proposed energy harvester that weighs 110g and with a volume of only 37.7cm $^3$ is fabricated. A series of experiments are carried out and the results show that the frequency band of the harvester becomes wider as the external vibration intensity increases. In addition, the effectiveness of ferrofluid in reducing friction is demonstrated under walking and running conditions. Without ferrofluid, the maximum average outputs are 10.15 mW and 32.53 mW respectively for walking and running. With ferrofluid, the maximum outputs are 17.72 mW and 54.61 mW, representing an increase of 74.58% and 67.88%, respectively. Furthermore, the prototype exhibits an average power density of 1.45 mW/cm $^3$ during running motions, which compares favorably with existing harvesters used in low power wearable devices.Item Open Access Preliminary design and multi-objective optimization of electro-hydrostatic actuator(Sage, 2016-06-17) Wu, Shuai; Yu, Bo; Jiao, Zongxia; Luk, Patrick Chi-KwongElectro-hydrostatic actuator is generally regarded as the preferred solution for more electrical aircraft actuation systems. It is of importance to optimize the weight, efficiency and other key design parameters, during the preliminary design phase. This paper describes a multi-objective optimization preliminary design method of the electro-hydrostatic actuator with the objectives of optimizing the weight and efficiency. Models are developed to predict the weight and efficiency of the electro-hydrostatic actuator from the requirements of the control surface. The models of weight prediction are achieved by using scaling laws with collected data, and the efficiency is calculated by the static energy loss model. The multi-objective optimization approach is used to find the Pareto-front of objectives and relevant design parameters. The proposed approach is able to explore the influence of the level length of linkage, displacement of pump and torque constant of motor on the weight and efficiency of the electro-hydrostatic actuator, find the Pareto-front designs in the defined parameter space and satisfy all relevant constraints. Using an electro-hydrostatic actuator for control surface as a test case, the proposed methodology is demonstrated by comparing three different conditions. It is also envisaged that the proposed prediction models and multi-objective optimization preliminary design method can be applied to other components and systems.Item Open Access Preliminary design and optimization of toroidally-wound limited angle servo motor based on a generalized magnetic circuit model(Institute of Electrical and Electronics Engineers, 2016-04-27) Wu, Shuai; Zhao, Xiangyu; Li, Xiao; Luk, Patrick Chi-Kwong; Jiao, ZongxiaThis paper proposes a new generalized equivalent magnetic circuit model for the preliminary design of a toroidally-wound limited angle servo motor (LASM). In the model, the magnetic networks are formulated as a function of the pole number and geometric dimensions. Nonlinear saturation effect of the ferromagnetic material is also taken into consideration. A multi-objective optimization function involving the torque requirement, the mass, the time constant, and magnetic saturations of ferromagnetic material is introduced. Based on the proposed model, six design cases with different objectives have been carried by the particle swarm optimization (PSO) method. The comparisons of different optimization cases demonstrate the effectiveness and computation efficiency of the proposed method, and hence its suitability in preliminary design. Moreover, the generalized model can be readily applied in the other electromagnetic modelling.