CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jemo, Martin"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effects of hotter, drier conditions on gaseous losses from nitrogen fertilisers
    (Elsevier, 2023-07-26) Drame, Marieme; Carswell, Alison; Roberts, William; Hood, Jess; Jemo, Martin; Heuer, Sigrid; Kirk, Guy; Pawlett, Mark; Misselbrook, Tom
    Global warming is expected to cause hotter, drier summers and more extreme weather events including heat waves and droughts. A little understood aspect of this is its effects on the efficacy of fertilisers and related nutrient losses into the environment. We explored the effects of high soil temperature (>25 °C) and low soil moisture (<40% water filled pore space; WFPS) on emissions of ammonia (NH3) and nitrous oxide (N2O) following application of urea to soil and the efficacy of urease inhibitors (UI) in slowing N losses. We incubated soil columns at three temperatures (15, 25, 35 °C) and three soil moisture contents (20, 40, 60% WFPS) with urea applied on the soil surface with and without UIs, and measured NH3 and N2O emissions using chambers placed over the columns. Four fertiliser treatments were applied in triplicate in a randomised complete block design: (1) urea; (2) urea with a single UI (N-(n-butyl) thiophosphoric triamide (NBPT); (3) urea with two UI (NBPT and N-(n-propyl) thiophosphoric triamide; NPPT); and (4) a zero N control. Inclusion of UI with urea, relative to urea alone, delayed and reduced peak NH3 emissions. However, the efficacy of UI was reduced with increasing temperature and decreasing soil moisture. Cumulative NH3 emission did not differ between the two UI treatments for a given set of conditions and was reduced by 22–87% compared with urea alone. Maximum cumulative NH3 emission occurred at 35 °C and 20% WFPS, accounting for 31% of the applied N for the urea treatment and 25%, on average for the UI treatments. Urease inhibitors did not influence N2O emissions; however, there were interactive impacts of temperature and moisture, with higher cumulative emissions at 40% WFPS and 15 and 25 °C accounting for 1.85–2.62% of the applied N, whereas at 35 °C there was greater N2O emission at 60% WFPS. Our results suggest that inclusion of UI with urea effectively reduces NH3 losses at temperatures reaching 35 °C, although overall effectiveness decreases with increasing temperature, particularly under low soil moisture conditions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Impacts of urease inhibitors on nitrogen assimilation in wheat and on reducing nitrogen losses
    (Cranfield University, 2024-03) Drame, Marieme; Kirk, Guy J. D.; Carswell, Alison; Misselbrook, Tom; Pawlett, Mark; Jemo, Martin
    A major global challenge for the 21st century is to ensure food security and sustainable development while limiting the adverse impact of agricultural reactive nitrogen (Nr) pollution and global warming greenhouse gas emissions (GHG). Climate change mitigation and adaptation strategies, with varying effectiveness, have been implemented across different regions in this perspective. The use of enhanced efficiency N fertilisers (EEF) in agriculture is a potential management strategy towards this aim, with documented benefits but with existing knowledge gaps. In this thesis, the efficacy of EEF, particularly urease inhibitors (UI), was determined under warmer, dryer climatic conditions as are expected to occur more frequently under climate change scenarios. Additionally, the potential of UI to improve nitrogen use efficiency (NUE) and enhance the tolerance of wheat varieties to drought stress at different N rates was evaluated, as well as the influence of UI on plant N assimilation and potential contribution to nitrous oxide (N₂O) emissions. The effects of high soil temperature (>25℃) and low soil moisture (<40% water filled pore space; WFPS) on emissions of ammonia (NH₃ ) and N₂O following application of urea to soil was assessed, and the efficacy of UI in reducing N losses. The findings suggest that treatment of urea with UI effectively reduces NH₃ losses at temperatures reaching 35℃, although overall effectiveness decreases with increasing temperature and low soil moisture conditions. Nitrous oxide emission was not influenced by the presence of UI but was high at soil moistures <60% WFPS. Nitrous oxide emission was also measured from wheat plants grown in soil and in a hydroponic system under low (7 kg ha⁻¹) and high N (70 kg ha⁻¹) conditions. Plants emitted more N₂O under low N growth conditions when supplied with additional potassium nitrate compared with those supplied with urea treated with UI. However, insufficient evidence was obtained from the hydroponic experiment to confirm plant N₂O formation through nitrate assimilation pathways, other than its overall contribution to N₂O emissions. Furthermore, when applied to plants under drought stressed conditions, UI did not enhance wheat tolerance to drought or increase yield and NUE. Nitrogen assimilation was influence by UI, particularly leaf urea concentration which increased in the presence of UI. Similarly, application of urea included with UI at a high N rate (180 kg ha⁻¹) resulted in lower wheat biomass and yield. Varietal differences were also observed in plant N₂O emission, drought tolerance and NUE. Overall, the findings support the use of UI as a Nr mitigation strategy under warm and dry conditions; however, for increased NUE and yield, appropriate fertiliser and crop management, specific to local conditions may be needed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback