CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "James, Christopher P."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Advanced oxidation processes for wastewater reuse - removal of micropollutants
    (Cranfield University, 2013-04) James, Christopher P.; Judd, Simon J.
    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Tests employed low concentrations of a range of emerging contaminants of concern, and the water quality varied by blending of waters from different sources. Under optimum H2O2 and lamp power conditions, the process achieved >99% removal of N-nitrosodimethylamine (NDMA) and endocrine disrupting compounds (EDCs) from all waters. Pesticide removal, in particular metaldehyde, atrazine and 2, 4 5-T, was dependent on water transmittance (UVT), and levels of Total Organic Carbon (TOC) and other hydroxyl radical (HO.) scavengers. Chloroform, a trihalomethane (THM), was not readily degraded (<10% removal in either stream), as was TOC removal. Further analysis of metaldehyde removal identified UVT, reaction time, and H2O2 dose to be influential parameters in determining degradation as a function of UV dose. In comparison, the impact of H2O2 dose and UVT was negligible on NDMA degradation; removal increased from 89 to >98% on increasing the UV dose from 200 to 680 mJ cm-2 from the MF permeate. Nitrite by-products were observed at elevated levels, promoted by low pH and high UV doses. An operational cost assessment revealed energy consumption to account for 65% with lamp replacement contributing 25%. A comparison of three unit process sequences, based on MF, RO, AOP and activated carbon (AC), revealed MF-RO-AOP to be the most cost effective provided management of the RO concentrate stream incurs no significant cost. Results demonstrated AOPs to satisfactorily reduce levels of the more challenging recalcitrant MPs to meet stringent water quality standards for wastewater reuse, but that practical limitations exist and the cost penalty is significant.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse
    (Elsevier Science B.V., Amsterdam., 2014-04-30T00:00:00Z) James, Christopher P.; Germain, Eve; Judd, Simon J.
    The removal of micropollutants (MPs) from secondary municipal wastewater by an advanced oxidation process (AOP) based on UV irradiation combined with hydrogen peroxide (UV/H2O2) has been assessed through pilot-scale experiments incorporating microfiltration (MF) and reverse osmosis (RO). Initial tests employed low concentrations of a range of key emerging contaminants of concern, subsequently focusing on the highly recalcitrant compound metaldehyde (MA), and the water quality varied by blending MF and RO permeate. Under optimum H2O2 and lamp power conditions, AOP achieved significant removal (>99%) of N-nitrosodimethylamine (NDMA) and endocrine disrupting compounds (EDCs) for all waters. Pesticide removal, in particular metaldehyde, atrazine and 2,4,5-trichlorophenoxyacetic acid, was dependent on water transmittance (UVT), and levels of TOC and other hydroxyl radical (OH) scavengers. Further analysis of MA removal showed UVT, hydraulic retention time and H2O2 dose to be influential parameters in determining degradation as a function of UV dose. A cost assessment revealed energy consumption to account for 65% of operating expenditure with lamp replacement contributing 25%. A comparison of three unit process sequences, based on MF, RO, AOP and activated carbon (AC), revealed MF-RO-AOP to be the most cost effective provided management of the RO concentrate stream incurred no significant cost. Results demonstrated AOPs to satisfactorily reduce levels of the more challenging recalcitrant MPs to meet stringent water quality standards for wastewater reuse, but that practical limitations exist and the cost penalty is significant.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback