CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ismail, Ahmad Faris"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Investigation of aircraft engine performance utilizing various alternative fuels
    (IOP, 2019-10-24) Li, Yi-Guang; Khan, S. A.; Ismail, Ahmad Faris
    The airlines are subjected to the energy crisis and have raised environmental issues at the same time. Future engine technology advances could decrease the effect on the environment and energy consumption. Alternative fuelspotentially assist in the reduction of engine emissions and hence lower the energy-related issues. This study presents analysis of the efficiency of aircraft engines as a function of thrust force, flow of the and specific fuel consumption (SFC) at distinct mixing ratios (40% and 100%) of African natural gas, Algae, Camelina, Jatropa, Diesel, Hydrogen, Synthetic paraffinic kerosene, UK natural gas at cruising altitude. In – house Cranfield University simulation codes, PYTHIA & TURBOMATCH have been used to investigate and model a three-shaft high bypass engine analogous to RB211 - 524. The engine model has been certified and authenticated in commercial aircraft with open works found in the Bio - Synthetic Paraffinic Kerosene test program.Blended fuel of Kerosene & hydrogen (KE+HY) fuels gives values of 331.6 KN,1.2577KG/S, and 6.9512 kg/kwh for net thrust force,the flow of fuel and specific fuel feastingat mingling ratio of 40 % respectively. However, at mixing ratio of 100% Blended fuel of Kerosene & hydrogen (KE+HY) fuels gives values of 339.01 KN, 0.800KG/S, and 4.333 kg/kwh for net thrust, fuel flow, and specific fuel consumption respectively. It is found that blended fuel of Kerosene &hydrogen (KE+HY) fuels give better engine performances as compared to other alternative fuels. However, Kerosene &diesel (KE+DI) fuels have shown a slight reduction in engine performance.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback