CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Inyang, Edidiong"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Enhanced biogas production from anaerobic co-digestion of lignocellulosic biomass and poultry feces using source separated human urine as buffering agent
    (Frontiers Media, 2018-07-02) Eduok, Samuel; John, Ofonime; Ita, Basil; Inyang, Edidiong; Coulon, Frederic
    Effect of source separated human urine as buffering agent compared to sodium bicarbonate and water in anaerobic co-digestion of lignocellulosic biomass and poultry feces was evaluated in laboratory scale reactor for 180 days at 37 ± 2°C. Mean biogas volume ranged from 37 ± 8 to 101 ± 18 mL gVS−1 in the urine buffered reactors which was 1–5 times higher than the bicarbonate and water buffered reactors and the difference was significant at p = 0. 05. Total volatile fatty acids (VFA) concentration ranged between 396 and 1,400 mg L−1 with a pH of 6.9 ± 0.3 and 7.8 ± 0.1, respectively. In contrast, VFA concentration ranged between 386 and 3,109 mg L−1 (pH 7.6 ± 0.2 and 4.8 ± 0.4) in sodium bicarbonate buffered digestate and control (water) respectively. The result indicates buffering capacity of urine on anaerobic co-digestion with positive effect on biogas production. The Archaeal isoprenoids included markers of aceticlastic and hydrogenotrophic methanogens with a relative abundance that ranged between 0.71–18, 3–55, and 2–59 μg g−1 dry matter in the water (control), bicarbonate and urine buffered digestate, respectively. The Archaeal abundance was 1.12 and 6 times higher in the combined female/male urine than the bicarbonate buffered digestate and the control, and the difference was significant at p = 0.05. Overall, this study demonstrates that human urine with no pharmaceutical loadings as a wetting and buffering agent is a promising option for anaerobic co-digestion with competitive edge over sodium bicarbonate on lignocellulosic biomass saccharification for enhanced biogas production.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback