CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Inutsuka, Shu-ichiro"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    On high-order numerical schemes for viscous relativistic hydrodynamics through the Kelvin–Helmholtz instability
    (Oxford University Press, 2022-06-24) Townsend, Jamie F.; Inutsuka, Shu-ichiro; Könözsy, László Z.; Jenkins, Karl W.
    This work assesses the dissipative properties of high-order numerical methods for relativistic hydrodynamics. A causal theory of physical dissipation is included within a finite volume high-resolution shock-capturing framework based on the Israel–Stewart theory to study high-order WENO (weighted-essentially non-oscillatory) schemes for simulating the relativistic Kelvin–Helmholtz instability. We provide an estimation of the numerical dissipation of high-order schemes based on results obtained both with and without physically resolved dissipation and determine an empirical relationship between the numerical dissipation and the grid resolution. We consider the appearance of secondary flow features within the evolution of the Kelvin–Helmholtz instability and determine that they are numerical artifacts — this is partly based on arguments presented in terms of a frame-dependent form of the relativistic Reynolds number. There is a potential advantage of using high-order schemes in terms of their accuracy and computational cost on coarser grid resolutions when directly compared to low-order schemes on a fine grid in the presence of physical viscosity. It is possible to find reasonable agreement between numerical results that employ lower-order schemes using a finer grid resolution and results that employ higher order schemes at a coarser grid resolution when sufficient viscosity is present. Overall, the present analysis gives an insight into the numerical dissipation of high-order shock-wave capturing schemes which can be relevant to computational studies of astrophysical phenomena in the relativistic regime. The results presented herein are problem and scheme-dependent and serve to highlight the different roles of numerical and physical dissipation.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback