CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ingram, Andrew"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process
    (Elsevier, 2017-12-12) Matos, Ravenna Lessa; Lu, Tiejun; McConville, Christopher; Leeke, Gary; Ingram, Andrew
    Dry powder formulations with potential application in pulmonary drug delivery were produced by integrating the Supercritical Antisolvent (SAS) process with a fluidized bed (FB) under pressure. The simultaneous precipitation and coating of curcumin on lactose was performed in a single step combining the advantages of both processes. Ethanol and acetone were used as solvents. The effects of operating parameters: pressure, temperature, drug-lactose mass ratio, solution flow rate and solution concentration on the drug size, morphology and yield were investigated. Due to the high degree of mixing in the fluidized bed, a uniform coating of curcumin onto lactose was achieved with loading efficiency varying from 71.0 to 93.3% and curcumin particle size between 0.41 and 12.08 μm. Solvent-free curcumin particles with reduced crystallinity were produced while the physicochemical properties of the raw materials were not changed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Recycling carbon fibre with an acetone/water solvent and zinc chloride catalyst: resin degradation and fibre characterisation
    (2018-09-13) Keith, Matthew J.; Ingram, Andrew; Leeke, Gary A.
    The degradation of a carbon fibre reinforced epoxy resin with an acetone/water mixture and ZnCl2 catalyst was investigated. The solvent/catalyst system achieved a resin removal yield in excess of 94% after 1.5 h at 290°C and 45 min at 300°C. Single fibre tensile testing indicated an increase in fibre strength after the recycling process. The strongest fibres were recovered using a reaction temperature of 290°C and exhibited a strength of 3.21 ± 1.10 GPa. The technique developed therefore appears to recover high quality fibres while reducing the temperature by 30°C and process time by 25% when compared to earlier work.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback