Browsing by Author "Infield, David"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Accounting for environmental conditions in data-driven wind turbine power models(IEEE, 2022-09-05) Pandit, Ravi; Infield, David; Santos, MatildeContinuous assessment of wind turbine performance is a key to maximising power generation at a very low cost. A wind turbine power curve is a non-linear function between power output and wind speed and is widely used to approach numerous problems linked to turbine operation. According to the current IEC standard, power curves are determined by a data reduction method, called binning, where hub height, wind speed and air density are considered as appropriate input parameters. However, as turbine rotors have grown in size over recent years, the impact of variations in wind speed, and thus of power output, can no longer be overlooked. Two environmental variables, namely wind shear and turbulence intensity, have the greatest impact on power output. Therefore, taking account of these factors may improve the accuracy as well as reduce the uncertainty of data-driven power curve models, which could be helpful in performance monitoring applications. This paper aims to quantify and analyse the impact of these two environmental factors on wind turbine power curves. Gaussian process (GP) is a data-driven, nonparametric based approach to power curve modelling that can incorporate these two additional environmental factors. The proposed technique's effectiveness is trained and validated using historical 10-minute average supervisory control and data acquisition (SCADA) datasets from variable speed, pitch control, and wind turbines rated at 2.5 MW. The results suggest that (i) the inclusion of the additional environmental parameters increases GP model accuracy and reduces uncertainty in estimating the power curve; (ii) a comparative study reveals that turbulence intensity has a relatively greater impact on GP model accuracy, together with uncertainty as compared to blade pitch angle. These conclusions are confirmed using performance error metrics and uncertainty calculations. The results have practical beneficial consequences for O&M related activities such as early failure detection.Item Open Access SCADA data for wind turbine data-driven condition/performance monitoring: A review on state-of-art, challenges and future trends(Sage, 2022-09-19) Pandit, Ravi; Astolfi, Davide; Hong, Jiarong; Infield, David; Santos, MatildeThis paper reviews the recent advancement made in data-driven technologies based on SCADA data for improving wind turbines’ operation and maintenance activities (e.g. condition monitoring, decision support, critical components failure detections) and the challenges associated with them. Machine learning techniques applied to wind turbines’ operation and maintenance (O&M) are reviewed. The data sources, feature engineering and model selection (classification, regression) and validation are all used to categorise these data-driven models. Our findings suggest that (a) most models use 10-minute mean SCADA data, though the use of high-resolution data has shown greater advantages as compared to 10-minute mean value but comes with high computational challenges. (b) Most of SCADA data are confidential and not available in the public domain which slows down technological advancements. (c) These datasets are used for both, the classification and regression of wind turbines but are used in classification extensively. And, (d) most commonly used data-driven models are neural networks, support vector machines, probabilistic models and decision trees and each of these models has its own merits and demerits. We conclude the paper by discussing the potential areas where SCADA data-based data-driven methodologies could be used in future wind energy research.Item Open Access Sequential data-driven long-term weather forecasting models’ performance comparison for improving offshore operation and maintenance operations(MDPI, 2022-10-01) Pandit, Ravi; Astolfi, Davide; Tang, Anh Minh; Infield, DavidOffshore wind turbines (OWTs), in comparison to onshore wind turbines, are gaining popularity worldwide since they create a large amount of electrical power and have thus become more financially viable in recent years. However, OWTs are costly as they are vulnerable to damage from extremely high-speed winds and thereby affect operation and maintenance (O&M) operations (e.g., vessel access, repair, and downtime). Therefore, accurate weather forecasting helps to optimise wind farm O&M operations, improve safety, and reduce the risk for wind farm operators. Sequential data-driven models recently found application in solving the wind turbines problem; however, their application to improve offshore operation and maintenance through weather forecasting is still limited and needs further investigation. This paper fills this gap by proposing three sequential data-driven techniques, namely, long short-term memory (LSTM), bidirectional LSTM (BiLSTM) and gated recurrent units (GRU) for long-term weather forecasting. The proposed techniques are then compared to summarise the strength and weaknesses of these models concerning long-term weather forecasting. Weather datasets (wind speed and wave height) are intermittent over different time scales and reflect offshore weather conditions. These datasets (obtained from the FINO3 database) will be used in this study for training and validation purposes. The study results suggest that the proposed technique can generate more realistic and reliable weather forecasts in the long term. It can also be stated that it responds better to seasonality and forecasted expected results. This is further validated by the calculated values of statistical performance metrics and uncertainty quantification.