CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Humphries, M."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Operating strategies for variable-flow sequencing batch reactors.
    (Blackwell Publishing, 2007-03) Bungay, S.; Humphries, M.; Stephenson, Tom
    Sequencing batch reactors (SBRs) are variable-volume, non-steady-state, suspended-growth biological wastewater treatment reactors. The treatment process is characterised by a repeated treatment cycle consisting of a series of sequential process phases: fill, react, settle, decant and idle. The design and operation of an SBR must take into account (1) the biological process requirement for treating influent wastewater and (2) the hydraulic requirement to enable throughput of the water through the reactor without compromising on the quality of biological treatment. During routine operation, the priority between the process and hydraulic consideration can change depending on the influent flow rate and its rate of change. The importance of the interaction between these considerations will vary depending on the fill strategy and the cycle time control strategy. Where flow-proportional cycle times are utilised to optimise the treatment process, the operating strategy must be capable of accurately adjusting the intercycle phase times to prevent loss of biological treatment or volumetric capacity. This paper considers various operating strategies and describes the specific strategy used at the SBR at Avonmouth wastewater treatment works.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback