CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hudson, Neil"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Assessing microbial growth in drinking water using nucleic acid content and flow cytometry fingerprinting
    (Elsevier, 2024-12-20) Claveau, Leïla; Hudson, Neil; Jeffrey, Paul J.; Hassard, Francis
    This study utilizes flow cytometry (FCM) to evaluate the high nucleic acid (HNA) and low nucleic acid (LNA) content of intact cells for monitoring bacterial dynamics in drinking water treatment and supply systems. Our findings indicate that chlorine and nutrients differently impact components of bacterial populations. HNA bacteria, characterized by high metabolic rates, quickly react to nutrient alterations, making them suitable indicators of growth under varying water treatment and supply conditions. Conversely, LNA bacteria adapt to environments with stable, slowly degradable organics, reflecting distinct physiological characteristics. Changes in water treatment and supply conditions, such as chlorine dosing and nutrient inputs, significantly impact the ratio between HNA and LNA. FCM fingerprinting combined with cluster analysis provides a more sensitive evaluation of water quality by capturing a broader range of microbial characteristics compared to using only HNA/LNA ratios. This work advocates for multi-parameter data analysis to advance monitoring techniques for water treatment and supply processes.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evaluating flow cytometric metrics for enhancing microbial monitoring in drinking water treatment processes
    (Elsevier, 2025-01-01) Claveau, Leïla; Hudson, Neil; Jeffrey, Paul J.; Hassard, Francis
    Flow cytometry (FCM) offers a rapid method for bacterial detection in drinking water but faces challenges in terms of data analysis, particularly gating subjectivity. This study evaluates three metrics derived from the Intact Cell Count (ICC): High/Low Nucleic Acid (HNA/LNA) ratios, Bray–Curtis Dissimilarity Index (BCDI), and FCM fingerprints—to enhance microbial monitoring approaches across different water treatment and distribution stages. ICC provided a direct assessment of microbial load in high cell count scenarios, while HNA/LNA ratios were valuable during low microbial levels. BCDI effectively tracked microbial population changes throughout treatment processes. A lead–lag analysis revealed that ICC changes often precede or coincide with BCDI changes and lead changes in HNA/LNA ratios. FCM fingerprinting visualized spatial and temporal variations in microbial communities. Combining these FCM metrics improved microbial water quality assessment and supports approaches to optimise water treatment strategies from a microbial perspective.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Microbial water quality investigation through flow cytometry fingerprinting: from source to tap
    (Oxford University Press, 2024-01-01) Claveau, Leila; Hudson, Neil; Jarvis, Peter; Jeffrey, Paul; Hassard, Francis
    Ensuring the quality of treated drinking water is crucial for preventing potential health impacts, regulatory fines, and reputation damage. Traditional culture-based microbiological methods often fail to capture the heterogeneity of the bacterial communities in drinking water. This study employed daily interstage monitoring and flow cytometry (FCM) analysis over a period of one year to investigate the dynamics of water treatment processes and service reservoirs. The objective of this study was to test the utility of FCM fingerprints for aiding in microbial event detection. We found that the chlorine concentration contact time was pivotal for microbial log reduction across the treatment works. FCM fingerprints exhibited significant deviations during operational events, such as process interruptions, but did not correlate with the presence of bacterial indicator organisms in the distributed and tap water. Furthermore, the diversity of bacterial fingerprints, quantified by the Bray–Curtis dissimilarity index, served as an indicator for identifying potentially poor microbial water quality. In chlorinated waters with low cell counts, the background signal shows potential as a metric to differentiate between different water sources, thereby offering the possibility to characterize breakthrough events in these circumstances that challenge most other microbial analytical methods. Interestingly, groundwater from simpler treatment works showed a higher occurrence of bacterial indicators, whereas surface water works had a lower incidence. These findings underpin the importance of appropriate disinfection even for “low-risk” source waters and the added value that the statistical interpretation of FCM data can offer objective decision making.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    To gate or not to gate: revisiting drinking water microbial assessment through flow cytometry fingerprinting
    (Elsevier, 2024-02-20) Claveau, Leila; Hudson, Neil; Jeffrey, Paul; Hassard, Francis
    Flow cytometry has been utilized for over a decade as a rapid and reproducible approach to assessing microbial quality of drinking water. However, the need for specialized expertise in gating—a fundamental strategy for distinguishing cell populations—introduces the potential for human error and obstructs the standardization of methods. This work conducts a comprehensive analysis of various gating approaches applied to flow cytometric scatter plots, using a dataset spanning a year. A sensitivity analysis is carried out to examine the impact of different gating strategies on final cell count results. The findings show that dynamic gating, which requires user intervention, is essential for the analysis of highly variable raw waters and distributed water. In contrast, static gating proved suitable for more stable water sources, interstage sample locations, and water presenting a particularly low cell count. Our conclusions suggest that cell count analysis should be supplemented with fluorescence fingerprinting to gain a more complete understanding of the variability in microbial populations within drinking water supplies. Establishing dynamic baselines for each water type in FCM monitoring studies is essential for choosing the correct gating strategy. FCM fingerprinting offers a dynamic approach to quantify treatment processes, enabling options for much better monitoring and control. This study offers new insights into the vagaries of various flow cytometry gating strategies, thereby substantially contributing to best practices in the water industry. The findings foster more efficient and reliable water analysis, improving of standardizing methods in microbial water quality assessment using FCM.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback