CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huang, Zhiyu"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Multi-agent trajectory prediction with heterogeneous edge-enhanced graph attention network
    (IEEE, 2022-02-01) Mo, Xiaoyu; Huang, Zhiyu; Xing, Yang; Lv, Chen
    Simultaneous trajectory prediction for multiple heterogeneous traffic participants is essential for safe and efficient operation of connected automated vehicles under complex driving situations. Two main challenges for this task are to handle the varying number of heterogeneous target agents and jointly consider multiple factors that would affect their future motions. This is because different kinds of agents have different motion patterns, and their behaviors are jointly affected by their individual dynamics, their interactions with surrounding agents, as well as the traffic infrastructures. A trajectory prediction method handling these challenges will benefit the downstream decision-making and planning modules of autonomous vehicles. To meet these challenges, we propose a three-channel framework together with a novel Heterogeneous Edge-enhanced graph ATtention network (HEAT). Our framework is able to deal with the heterogeneity of the target agents and traffic participants involved. Specifically, agents' dynamics are extracted from their historical states using type-specific encoders. The inter-agent interactions are represented with a directed edge-featured heterogeneous graph and processed by the designed HEAT network to extract interaction features. Besides, the map features are shared across all agents by introducing a selective gate-mechanism. And finally, the trajectories of multiple agents are predicted simultaneously. Validations using both urban and highway driving datasets show that the proposed model can realize simultaneous trajectory predictions for multiple agents under complex traffic situations, and achieve state-of-the-art performance with respect to prediction accuracy. The achieved final displacement error (FDE@3sec) is 0.66 meter under urban driving, demonstrating the feasibility and effectiveness of the proposed approach.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback