CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Huang, Guangyuan"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Framework for multi-fidelity assessment of open rotor propeller aeroacoustics
    (AIAA, 2024-05-30) Huang, Guangyuan; Sharma, Ankit; Chen, Xin; Riaz, Atif; Jefferson-Loveday, Richard
    Aerodynamically generated noise from open rotor aircraft has received immense research interests. Multi-fidelity numerical approaches are in demand for evaluating open rotor propeller noise without compromising computational accuracy and reducing cost. In this paper, propeller noise modelling methods at different fidelity levels are assessed by application to an aircraft propeller configuration at an advance ratio of 0.485 together with tip Reynolds and Mach numbers of 3.7×10^5 and 0.231, respectively. The flow solution of the propeller is obtained using coarse-grid Large Eddy Simulation and then inputted into three acoustic solvers. At higher-fidelity level, Ffowcs-Williams and Hawkings analogy method is employed. Hanson’s method and Gutin’s method are applied at the medium- and lower -fidelity levels, respectively. Results from the three models are compared correlatively, as well as against existing experimental measurement data. Through the assessment, insight is given into future development of a multi-fidelity model for low-emission open rotor aircraft design. The presented multi-fidelity framework is being developed as part of the Innovate UK, Aerospace Technology Institute (ATI) funded research project – ONEheart (Out of Cycle NExt generation highly efficient air transport).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Framework for multi-fidelity simulations of flow interaction and noise of an open rotor
    (American Institute of Aeronautics and Astronautics (AIAA), 2025-01-06) Huang, Guangyuan; Sharma, Ankit; Chen, Xin; Jimeno, Sergio; Riaz, Atif
    Flow-induced noise from open rotor aircraft has received immense research interests as the flow interactions of the components of open rotors lead to significant non-linear features and the flow-induced noise is complicated. Numerical approaches for predicting open rotor flow interactions and the induced noise are in demand without compromising computational accuracy and reducing cost. In this paper, an existing multi-fidelity framework for propeller noise modelling is extended to open rotor configuration. A generic contra-rotating open rotor (CROR) configuration is developed to assess the capability of this multi-fidelity framework. The flow and noise of this configuration are modelled separately in hybrid manner. The flow solution is computed using two methods, which employ unsteady Reynolds average Navier-Stokes (URANS) equations and lattice-vortex method (VLM) at respectively higher- and lower-fidelity levels. Then, the acoustic solution is computed based on the flow solution using Gutin’s method. Results show that transonic features over the rotor blades and significant tip vortices in the wake characterise the CROR flow. Multi-rotor interactions are observed. The aerodynamic loadings are investigated in terms of their mean and fluctuating components. In addition, the far-field noise from the two rotors are compared. The present multi-fidelity framework will be used in future aircraft design which involves open rotor engines. This work is being administered as part of the Innovate UK, Aerospace Technology Institute (ATI) funded research project - ONEheart (Out of Cycle NExt generation highly efficient air transport).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Numerical predictions of Low-Reynolds-Number propeller aeroacoustics: comparison of methods at different fidelity levels
    (MDPI, 2025-02-18) Huang, Guangyuan; Sharma, Ankit; Chen, Xin; Riaz, Atif; Jefferson-Loveday, Richard
    Low-Reynolds-number propeller systems have been widely used in aeronautical applications, such as unmanned aerial vehicles (UAV) and electric propulsion systems. However, the aerodynamic sound of the propeller systems is often significant and can lead to aircraft noise problems. Therefore, effective predictions of propeller noise are important for designing aircraft, and the different phases in aircraft design require specific prediction approaches. This paper aimed to perform a comparison study on numerical methods at different fidelity levels for predicting the aerodynamic noise of low-Reynolds-number propellers. The Ffowcs-Williams and Hawkings (FWH), Hanson, and Gutin methods were assessed as, respectively, high-, medium-, and low-fidelity noise models. And a coarse-grid large eddy simulation was performed to model the propeller aerodynamics and to inform the three noise models. A popular propeller configuration, which has been used in previous experimental and numerical studies on propeller noise, was employed. This configuration consisted of a two-bladed propeller mounted on a cylindrical nacelle. The propeller had a diameter of D=9″ and a pitch-to-diameter ratio of P/D=1, and was operated in a forward-flight condition with a chord-based Reynolds number of Re=4.8×104, a tip Mach number of M=0.231, and an advance ratio of J=0.485. The results were validated against existing experimental measurements. The propeller flow was characterized by significant tip vortices, weak separation over the leading edges of the blade suction sides, and small-scale vortical structures from the blade trailing edges. The far-field noise was characterized by tonal noise, as well as broadband noise. The mechanism of the noise generation and propagation were clarified. The capacities of the three noise modeling methods for predicting such propeller noise were evaluated and compared.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback