Browsing by Author "Hesampoor, Faezeh"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Embargo Biodegradation of oily waste sludge using vermiremediation and composting process bioaugmentated with isolated hydrocarbon-degrading bacteria: performance and ecotoxicity assessment(Elsevier BV, 2024-12-01) Alinoori, Maral; Saeedi, Reza; Coulon, Frederic; Villaseñor, José; Goodini, Kazem; Ghamari, Farhad; Hesampoor, Faezeh; Asghari, Fatemeh; Sartaj, Majid; Koolivand, AliDegradation of petroleum hydrocarbons (PHs) contents of oily waste sludge (OWS) is necessary in order to prevent the related environmental pollution. The present study aimed to investigate the degradation of total petroleum hydrocarbons (TPHs) from OWS using bioaugmentated composting (BC) with hydrocarbon-degrading bacterial consortium (HDBC) as pre-treatment followed by vermicomposting (VC) by Eisenia fetida. After isolating two indigenous bacterial strains from OWS, the ability of their consortium in degradation of crude oil was tested in Bushnell-Haas medium (BHM). Then, biodegradation of OWS was measured in the VC alone, BC alone, simultaneous BC and VC (BCVC), and BC followed by VC (BCFVC) containing high levels (30 g/kg) of TPHs. Toxicity tests including the mortality of mature earthworms and the numbers of juveniles were conducted at the TPHs of 0–40 g/kg. The obtained results indicated that the HDBC removed 18–64 % of TPHs of crude oil (1–5 %) in BHM after 7 days of incubation. After a period of 12 weeks, the removal rates of TPHs in the VC, BC, BCVC, and BCFVC experiments were 23.7, 79.5, 85.2, and 91.8 %, respectively, verifying the efficacy of simultaneous application of HDBC and worms in bioremediation of OWS. The TPHs contents of OWS exhibited toxic effects on E. fetida at some concentrations and the median lethal concentration (LC50) of TPHs was computed to be 14.5 g/kg after 28 days. This study demonstrated the effectiveness of composting bioaugmentated with HDBC as a pre-treatment step followed by vermicomposting in bioremediation of OWS.Item Open Access Bioremediation of petroleum hydrocarbons by vermicomposting process bioaugmentated with indigenous bacterial consortium isolated from petroleum oily sludge(Elsevier, 2020-04-25) Koolivand, Ali; Saeedi, Reza; Coulon, Frederic; Kumar, Vinod; Villaseñor, José; Asghari, Fatemeh; Hesampoor, FaezehFinding a sound ecological-based approach for the removal of petroleum hydrocarbons (PHCs) from petroleum oily sludge (POS) generated in oil refinery plants is still a challenge. This study investigated the removal of total petroleum hydrocarbons (TPHs) using bioaugmentated composting (BC) by hydrocarbon-degrading bacteria (HDB) and vermicomposting (VC) by Eisenia fetida, individually and in combination (BCVC). After isolating two native bacterial strains from POS prepared from an oil refinery plant in Iran, the degradation capability of their consortium was initially assessed in mineral Bushnell-Haas medium (MBHM). Then, the biodegradation rates of POS in the BC, VC, and BCVC treatments containing different concentrations of TPHs (5, 10, and 20 g/kg) were determined by measuring TPHs before and after the biodegradation. The results showed that the consortium degraded 20–62% of TPHs contents of Kerosene (1–5%) in the MBHM after 7 days. After 12 weeks, the TPHs removal percentages in the BC, VC, and BCVC treatments were respectively found to be 81–83, 31–49, and 85–91 indicating the synergistic effect of bacteria and worms in bioremediation of POS. The PHCs biodegradation in the BC, VC, and BCVC experiments was fitted to 1st order model kinetics. The results of toxicity tests indicated that the values of the no observed lethal concentration (NOLC) and median lethal concentration (LC50) of TPHs were 2–5 and 14.64 g/kg, respectively after 28 days of earthworm exposure. Morphological impairments such as swelling, coiling, and curling were observed when TPHs concentration was even lower than NOLC. The study verified the effectiveness of vermicomposting bioaugmentated with the indigenous bacterial consortium for POS bioremediation.