Browsing by Author "Hassard, Francis"
Now showing 1 - 20 of 64
Results Per Page
Sort Options
Item Open Access Abundance and distribution of enteric bacteria and viruses in coastal and estuarine sediments - A review(Frontiers Media, 2016-11-01) Hassard, Francis; Gwyther, Ceri L.; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Howard, Brett; Jones, Davey L.; McDonald, James E.; Malham, Shelagh K.The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically < 10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and viruses into the water column during sediment resuspension also represents a risk to water quality. In conclusion, our poor process level understanding of viral/bacterial-sediment interactions combined with methodological challenges is limiting the accurate source apportionment and quantitative microbial risk assessment for pathogenic organisms associated with sediments in aquatic environments.Item Open Access Achieving drinking water compliance levels for metaldehyde with an acclimated sand bioreactor(Elsevier, 2020-07-06) Rolph, Catherine A.; Jefferson, Bruce; Brookes, Adam; Hassard, Francis; Villa, Raffaella;Metaldehyde removal was delivered to below the 0.1 µg L-1 regulatory concentration in a laboratory scale continuous upflow fluidised sand bioreactor that had undergone acclimation through selective enrichment for metaldehyde degradation. This is the first reported case of successful continuous flow biological treatment of metaldehyde from real drinking water sources treating environmentally realistic metaldehyde concentrations. The impact of the acclimation process was impermanent, with the duration of effective treatment directly related to the elevated concentration of metaldehyde used during the enrichment process. The efficacy of the approach was demonstrated in continuous flow columns at both laboratory and pilot scale enabling degradation rates of between 0.1 and 0.2 mg L-1 h-1. Future work needs to focus on optimisation of the sand bioreactor and the acclimation process to ensure viability and feasibility of the approach at full scaleItem Open Access Advanced reactor technology for wastewater treatment.(Cranfield University, 2015-04) Hassard, Francis; Stephenson, Tom; Cartmell, EliseElevated stringency regarding discharges and an aging asset base represent challenges to modern wastewater treatment. This requires upgrade of existing wastewater assets for low energy nutrient removal for minimal cost. Advanced rotating biofilm reactors can be used as a pre-treatment, high organic loading rate (OLR), low hydraulic residence time (HRT) treatment facilitating upgrade of existing wastewater treatment plant (WWTP). The threshold for stable nitrification in rotating biological contactors (RBCs) was assumed to be 15 g.BOD₅.m⁻²d⁻¹ however media modifications have shown that this value can be elevated to ~35 g.sCOD.m⁻²d⁻¹ (73.5 g.BOD₅.m⁻²d⁻¹ ) in rotating biofilm reactors (RBR). Mesh media was compared to two different reticulated foam media, the mesh media had similar porosities but elevated performance compared to the foam media. Elevated OLR resulted in lower volumetric bacterial viability suggesting inhibition at >100 g.sCOD.m⁻²d⁻¹. Comparison of four different mesh media suggested that high porosity mesh media is best for performance and to prevent pore clogging. Bacterial specific activity increased with OLR, but performance at very high OLR decreased. Biofilm reactors can be operated in a ‘hybrid’ configuration where settled bacterial solids can be recycled into the biofilm reactor to improve performance by reducing the effective biofilm OLR. Studies at full scale revealed that extracellular enzyme activity was higher in biofilms compared to suspended growth bacteria. Hybrid upgrade of existing wastewater treatment works resulted in 52 and 40% increase in removal rate of COD and NH₄-N respectively. Comparing different solids type for hybrid reactors utilising activated sludge flocs had the greatest performance benefit compared to HS and FE respectively for sCOD and NH₄-N removal. Incorporating a solids feed in hybrid reactors improved nitrification and organics removal at lower loading. However the solids in the recycle feed reduced denitrification at very high OLR suggesting flocs inhibit denitrification. Hybrid RBRs have 4.8 fold increase in protein EEA compared to single pass reactors under similar conditions. Recycling bacterial solids reduces the effective OLR on the biofilm and confers significant performance benefits. Upfront RBRs provide suitable upgrade for existing WWTP.Item Open Access Application of ultraviolet light-emitting diodes (UV-LED) to full-scale drinking-water disinfection(MDPI, 2019-09-11) Jarvis, Peter; Autin, Olivier; Goslan, Emma Harriet; Hassard, FrancisUltraviolet light-emitting diodes (UV-LEDs) have recently emerged as a viable technology for water disinfection. However, the performance of the technology in full-scale drinking-water treatment systems remains poorly characterised. Furthermore, current UV disinfection standards and protocols have been developed specifically for conventional mercury UV systems and so do not necessarily provide an accurate indication of UV-LED disinfection performance. Hence, this study aimed to test the hypothesis that a full-scale UV-LED reactor can match the Cryptosporidium inactivation efficiency of conventional mercury UV reactors. Male-specific bacteriophage (MS2) was used as the Cryptosporidium spp. surrogate microorganism. The time-based inactivation efficiency of the full-scale reactor was firstly compared to that of a bench-scale (batch-type) UV-LED reactor. This was then related to mercury UV reactors by comparing the fluence-based efficiency of the bench-scale reactor to the USEPA 90% prediction interval range of expected MS2 inactivation using mercury UV lamps. The results showed that the full-scale UV-LED reactor was at least as effective as conventional mercury UV reactors at the water-quality and drive-current conditions considered. Nevertheless, comparisons between the bench- and full-scale UV-LED reactors indicated that improvements in the hydraulic flow profile and power output of the full-scale reactor could help to further improve the efficiency of UV-LED reactors for municipal drinking water disinfection. This represents the world’s first full-scale UV-LED reactor that can be applied at municipal water treatment works for disinfection of pathogenic microorganisms from drinking water.Item Open Access Automated Drinking Water Quality Assessment: New Insights into Flow Cytometry Fluorescent Fingerprinting without Cell Gating(Cranfield University, 2024-02-16 09:05) Hassard, Francis; Claveau, Leila; Jeffrey, PaulDataset for peer review paper from EngD EPSRC funded thesis L. Claveau - Chapter 2 and Chapter 3Item Open Access Bioaugmentation enables enhanced pesticide removal in slow sand filters – impact of dosing on filter microbiome: data(Cranfield University, 2024-02-16 09:13) Hassard, FrancisDataset relating to the article: Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrixItem Open Access Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix(Elsevier, 2022-01-14) Castro-Gutierrez, V. M.; Pickering, Laura; Cambronero-Heinrichs, J. C.; Holden, B.; Haley, J.; Jarvis, Peter; Jefferson, Bruce; Helgason, T.; Moir, J. W.; Hassard, FrancisMetaldehyde is a polar, mobile, low molecular weight pesticide that is challenging to remove from drinking water with current adsorption-based micropollutant treatment technologies. Alternative strategies to remove this and compounds with similar properties are necessary to ensure an adequate supply of safe and regulation-compliant drinking water. Biological removal of metaldehyde below the 0.1 µg•L−1 regulatory concentration was attained in pilot-scale slow sand filters (SSFs) subject to bioaugmentation with metaldehyde-degrading bacteria. To achieve this, a library of degraders was first screened in bench-scale assays for removal at micropollutant concentrations in progressively more challenging conditions, including a mixed microbial community with multiple carbon sources. The best performing strains, A. calcoaceticus E1 and Sphingobium CMET-H, showed removal rates of 0.0012 µg•h−1•107 cells−1 and 0.019 µg•h−1•107 cells−1 at this scale. These candidates were then used as inocula for bioaugmentation of pilot-scale SSFs. Here, removal of metaldehyde by A. calcoaceticus E1, was insufficient to achieve compliant water regardless testing increasing cell concentrations. Quantification of metaldehyde-degrading genes indicated that aggregation and inadequate distribution of the inoculum in the filters were the likely causes of this outcome. Conversely, bioaugmentation with Sphingobium CMET-H enabled sufficient metaldehyde removal to achieve compliance, with undetectable levels in treated water for at least 14 d (volumetric removal: 0.57 µg•L−1•h−1). Bioaugmentation did not affect the background SSF microbial community, and filter function was maintained throughout the trial. Here it has been shown for the first time that bioaugmentation is an efficient strategy to remove the adsorption-resistant pesticide metaldehyde from a real water matrix in upscaled systems. Swift contaminant removal after inoculum addition and persistent activity are two remarkable attributes of this approach that would allow it to effectively manage peaks in metaldehyde concentrations (due to precipitation or increased application) in incoming raw water by matching them with high enough degrading populations. This study provides an example of how stepwise screening of a diverse collection of degraders can lead to successful bioaugmentation and can be used as a template for other problematic adsorption-resistant compounds in drinking water purification.Item Open Access Biodegradation of (Aminomethyl)phosphonic acid (AMPA) by isolated microbial consortia extracted from biological filters at drinking water treatment plants(Elsevier, 2024) Pickering, Laura; Folkes, Miles; Holden, Barrie; Jarvis, Peter; Campo, Pablo; Hassard, FrancisThe widespread use of glyphosate has significantly increased its presence in drinking water sources. Aminomethylphosphonic Acid (AMPA), a breakdown product of glyphosate, is challenging to remove from water using conventional treatment methods, posing risks to public health and environmental safety. This work investigates the biodegradation of AMPA by bacteria isolated from three environmental sources, with a focus on determining their potential application in water treatment systems. Two samples were collected from granular activated carbon (GAC) filters of different operational durations at a water treatment facility, and one sample was taken from soil that had historically been treated with glyphosate-based herbicides. Bacterial isolates capable of degrading AMPA were identified from these samples through selective enrichment, and kinetic degradation experiments were then conducted to assess their effectiveness. In environmental samples, after 48 hrs AMPA removal was > 70 % using GAC from an active treatment plant and soil samples removed 19 %. After bacterial isolation a consortium was isolated and from these four isolates were identified, comprising three species, including novel AMPA degraders M−S3 and M−SS (Myroides sp. mNGS23), and P-S92 (Pseudochrobactrum saccharolyticum). Within both minimal media supplemented with AMPA and raw untreated showing substrate concentrations above 10 mg/L whilst the specific degradation rates saw a decrease in substrate concentrations above 100 mg/L. AMPA removal occured in pilot scale sand filters augmented with P-S92 but removal was inconsistent. These findings show the potential of using biodegradation as an effective treatment strategy for AMPA removal from water. The identification of AMPA-degrading bacteria offers a promising solution for enhancing the removal of this persistent pollutant from contaminated waters. Further research is recommended to explore the full-scale application of these isolates in water treatment processes. This study contributes to the development of sustainable water treatment technologies by harnessing the natural degradative capacities of environmental bacteria.Item Open Access Biosolids recycling impact on biofilm extracellular enzyme activity and performance of hybrid rotating biological reactors(Elsevier, 2019-11-30) Hassard, Francis; Biddle, Jeremy; Cartmell, Elise; Coulon, Frederic; Stephenson, TomBiological processes for wastewater treatment is limited by extracellular enzyme activity (EEA) of the biofilm on polymeric substrates. The efficiency of biodegradation / biosorption mechanisms causing EEA and organic load removal in biofilms remains unknown. Our hypothesis was that the limiting step of biological process can be overcome by biostimulation and/or bioaugmentation of the return sludge in hybrid biofilm reactors, which leads to competition between suspended and attached bacteria and lower effective substrate to microrganism ratio. Therefore, we considered more active biosolids to perform best at enhancing reactor removal rate. To test this, the efficacy of recycling distinct bio-solids types considered to have different bacterial activity such as final effluent (FE), humus solids (HS) and recycle activated sludge (RAS) on performance improvements of rotating biofilm reactors (RBRs). These bio-solids were investigated under high organic loading rates (OLR) and solids loading rates (SLR) using pilot scale reactors receiving real municipal wastewaters. Controlled overloading of RBRs revealed that EEA improved with increasing OLR/SLR. High SLR (>3.3 kg Total Suspended Solids m−2 d−1) delayed and decreased the reduction of organic and inorganic removal rates in the biological processes which commonly occurs under high OLRs. This effect was more pronounced in the highest activity solids (RAS > HS > FE) suggesting the activity and function of bio-solids was critical to improve performance of RBRs. High OLR and SLR induced efficient denitrification and organics removal within the biofilm reactor at residence times of <5 min. Recycling active solids permitted EEA despite overloading which was critical to the performance of the RBRs.Item Open Access Campus source to sink wastewater surveillance of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)(Elsevier, 2024-05-06) Folkes, Miles; Castro-Gutierrez, V. M.; Lundy, Lian; Bajón-Fernández, Y.; Soares, Ana; Jeffrey, Paul; Hassard, FrancisWastewater-based surveillance (WBS) offers an aggregate, and cost-effective approach for tracking infectious disease outbreak prevalence within communities, that provides data on community health complementary to individual clinical testing. This study reports on a 16-month WBS initiative on a university campus in England, UK, assessing the presence of SARS-CoV-2 in sewers from large buildings, downstream sewer locations, raw wastewater, partially treated and treated effluents. Key findings include the detection of the Alpha (B.1.1.7) variant in wastewater, with 70 % of confirmed campus cases correlating with positive wastewater samples. Notably, ammonium nitrogen (NH4-N) levels showed a positive correlation (ρ = 0.543, p < 0.01) with virus levels at the large building scale, a relationship not observed at the sewer or wastewater treatment works (WWTW) levels due to dilution. The WWTW was compliant to wastewater standards, but the secondary treatment processes were not efficient for virus removal as SARS-CoV-2 was consistently detected in treated discharges. Tools developed through WBS can also be used to enhance traditional environmental monitoring of aquatic systems. This study provides a detailed source-to-sink evaluation, emphasizing the critical need for the widespread application and improvement of WBS. It showcases WBS utility and reinforces the ongoing challenges posed by viruses to receiving water quality.Item Open Access Can wastewater monitoring protect public health in schools?(Elsevier, 2023-03-16) Hassard, Francis; Singh, Suniti; Coulon, Frederic; Yang, ZhugenItem Open Access Chlorine disinfection of drinking water assessed by flow cytometry: new insights(Elsevier, 2020-07-10) Cheswick, Ryan; Moore, Graeme; Nocker, Andreas; Hassard, Francis; Jefferson, Bruce; Jarvis, PeterThe efficacy of chlorine disinfection was assessed for the first time over a range of disinfection conditions using flow cytometry (FCM) to provide new insights into disinfection processes. Inactivation was assessed for pure culture bacteria (Escherichia coli) and micro-organisms in real treated water from operational water treatment works (WTWs). A dose dependent increase in inactivation rate (k) was observed for both test matrices, with values of 0.03 to 0.26 and 0.32 to 3.14 L/mg min for the WTW bacteria and E. coli, respectively. After 2 min, E. coli was reduced by 2 log for all chlorine doses (0.12 to 1.00 mg/L). In the case of the WTW filtrate bacteria, after 2 min log reductions were between 0.54 and 1.14 with increasing chlorine concentration, reaching between 1.32 and 2.33 after 30 min. A decrease in disinfection efficacy was observed as temperature decreased from 19 to 5 °C for both microbial populations. With respect to chlorination at different pH (pH 6, 7, 8), membrane damage was more pronounced at higher pH. This was not consistent with the higher disinfection efficacy seen at lower pH. when culture based methods are used to assess bacterial reductions. This provides evidence that more understanding into the fundamental mechanisms of chlorine disinfection are required and that methodological alterations may be required (e.g. pH standardisation) to fully utilise FCM over the entire range of chlorination conditions observed in operational environmentsItem Open Access Coliphages as viral indicators of sanitary significance for drinking water(Frontiers, 2022-07-26) Singh, Suniti; Pitchers, Robert; Hassard, FrancisColiphages are virus that infect coliform bacteria and are used in aquatic systems for risk assessment for human enteric viruses. This mini-review appraises the types and sources of coliphage and their fate and behavior in source waters and engineered drinking water treatment systems. Somatic (cell wall infection) and F+ (male specific) coliphages are abundant in drinking water sources and are used as indicators of fecal contamination. Coliphage abundances do not consistently correlate to human enteric virus abundance, but they suitably reflect the risks of exposure to human enteric viruses. Coliphages have highly variable surface characteristics with respect to morphology, size, charge, isoelectric point, and hydrophobicity which together interact to govern partitioning and removal characteristics during water treatment. The groups somatic and F+ coliphages are valuable for investigating the virus elimination during water treatment steps and as indicators for viral water quality assessment. Strain level analyses (e.g., Qβ or GA-like) provide more information about specific sources of viral pollution but are impractical for routine monitoring. Consistent links between rapid online monitoring tools (e.g., turbidity, particle counters, and flow cytometry) and phages in drinking water have yet to be established but are recommended as a future area of research activity. This could enable the real-time monitoring of virus and improve the process understanding during transient operational events. Exciting future prospects for the use of coliphages in aquatic microbiology are also discussed based on current scientific evidence and practical needs.Item Open Access Comparison of gene targets and sampling regimes for SARS-CoV-2 quantification for wastewater epidemiology in UK prisons(IWA Publishing, 2023-12-02) Jobling, Kelly; Quintela-Baluja, Marcos; Hassard, Francis; Adamou, Panagiota; Blackburn, Adrian; Term Research Team; McIntyre-Nolan, Shannon; O'Mara, Oscar; Romalde, Jesus L.; Di Cesare, Mariachiara; Graham, David W.Prisons are high-risk settings for infectious disease transmission, due to their enclosed and semi-enclosed environments. The proximity between prisoners and staff, and the diversity of prisons reduces the effectiveness of non-pharmaceutical interventions, such as social distancing. Therefore, alternative health monitoring methods, such as wastewater-based epidemiology (WBE), are needed to track pathogens, including SARS-CoV-2. This pilot study assessed WBE to quantify SARS-CoV-2 prevalence in prison wastewater to determine its utility within a health protection system for residents. The study analysed 266 samples from six prisons in England over a 12-week period for nucleoprotein 1 (N1 gene) and envelope protein (E gene) using quantitative reverse transcriptase-polymerase chain reaction. Both gene assays successfully detected SARS-CoV-2 fragments in wastewater samples, with both genes significantly correlating with COVID-19 case numbers across the prisons (p < 0.01). However, in 25% of the SARS-positive samples, only one gene target was detected, suggesting that both genes be used to reduce false-negative results. No significant differences were observed between 14- and 2-h composite samples, although 2-h samples showed greater signal variance. Population normalisation did not improve correlations between the N1 and E genes and COVID-19 case data. Overall, WBE shows considerable promise for health protection in prison settings.Item Open Access A comprehensive adsorption study of 1-Hydroxy-2-Naphthoic acid using cost effective engineered materials(Elsevier, 2020-05-16) Zeb, Muhammad Aurang; Murtaza, Ghulam; Hussain, Muhammad Aamer; Kubra, Khadija Tul; Muvhiiwa, Ralph; De Kock, Lueta-Ann; Hassard, FrancisThe naphthoic acids are challenging and costly to remove from water and soil. 1-Hydroxy-2-Naphthoic acid (HNA) is a phenanthrene decomposition product from petroleum-contaminated environments during the aerobic decomposition of polyaromatic hydrocarbons. The hydrogeological mobility of hydrocarbon breakdown products represent a pollution risk (e.g. for drinking water sources). Adsorption to biochar produced from agricultural by-products is a useful strategy to remediate contaminated wastewaters. Here, we examine the controls on the HNA adsorption to the adsorbents magnetite, clay minerals, biochar and magnetite enriched companion materials, namely the influence of contact time, contaminant concentration and ionization effects at different pH. The adsorption of HNA was investigated using low-cost and readily available adsorbents: (i) wheat straw biochar, (ii) rice husk biochar, (iii) sugarcane biochar, (iv) zeolite, (v) montmorillonite, (vi) magnetite and their enriched magnetic companions. Magnetite enriched biochar exhibited greater adsorption rates compared with their nonmagnetic analogs for HNA. The maximum adsorption capacity of the magnetite enriched compounds (initial water concentration of 0.32 mmol HNA.L) was 0.45 mmol.HNA.g of enriched zeolite. The magnetite enriched biochar and conventional biochar showed similar adsorption kinetics although magnetite enrichment improved the efficacy of adsorption. The adsorption fitted the pseudo-second order model in all cases, suggesting the dominant mechanism of adsorption was chemisorption. The magnetite enrichment reduced intra-particle diffusion, possibly due to fouling or blocking of pores within the particles, as evidenced by the decrease in diffusion rate constants. Overall, HNA adsorption improved after magnetic enrichment due to magnetite competing with inhibition sites on the biochar carriers. These findings translate into equivalence between magnetite and magnetic biochars, suggesting cheaper alternative materials could be synthesized in situ with the biochar acting as both an adsorbent and carrier, increasing the prospect of designer biochars for targeted pollutant removal. This approach has the potential to be used for wastewater treatment or for application as a soil additive for remediation of runoff from contaminated soils.Item Open Access Data for the paper "From full-scale biofilters to bioreactors: engineering biological metaldehyde removal"(Cranfield University, 2019-07-17 11:45) Hassard, Francis; Jefferson, Bruce; Villa, Raffaella; Brookes, Adam; Choya, Andoni; Iceton, Gregg; Rolph, CatherineDatasets for Rolph, C.A., Villa, R., Jefferson, B., Brookes, A., Choya, A., Iceton, G. and Hassard, F., 2019. From full-scale biofilters to bioreactors: engineering biological metaldehyde removal. Science of the Total Environment, 685, pp.410-41.Item Open Access Data supporting 'Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix'(Cranfield University, 2022-02-02 10:20) Hassard, Francis; Jefferson, Bruce; Jarvis, PeterData for the manuscript titled: Bioaugmentation of pilot-scale slow sand filters can achieve compliant levels for the micropollutant metaldehyde in a real water matrix.Item Open Access Detection and characterization of bioaerosol emissions from wastewater treatment plants: Challenges and opportunities(Frontiers, 2022-11-10) Tian, Jianghan; Yan, Cheng; Garcia Alcega, Sonia; Hassard, Francis; Tyrrel, Sean; Coulon, Frederic; Ahmad Nasir, ZaheerRapid population growth and urbanization process have led to increasing demand for wastewater treatment capacity resulting in a non-negligible increase of wastewater treatment plants (WWTPs) in several cities around the world. Bioaerosol emissions from WWTPs may pose adverse health risks to the sewage workers and nearby residents, which raises increasing public health concerns. However, there are still significant knowledge gaps on the interplay between process-based bioaerosol characteristics and exposures and the quantification of health risk which limit our ability to design effective risk assessment and management strategies. This review provides a critical overview of the existing knowledge of bioaerosol emissions from WWTPs including their nature, magnitude and size distribution, and highlights the shortcoming associated with existing sampling and analysis methods. The recent advancements made for rapid detection of bioaerosols are then discussed, especially the emerging real time detection methods to highlight the directions for future research needs to advance the knowledge on bioaerosol emissions from WWTPs.Item Open Access Dissemination of metaldehyde catabolic pathways is driven by mobile genetic elements in Proteobacteria(The Microbiology Society, 2022-10-27) Castro-Gutierrez, Víctor; Fuller, Edward; Garcillán-Barcia, María Pilar; Helgason, Thorunn; Hassard, Francis; Moir, JamesBioremediation of metaldehyde from drinking water using metaldehyde-degrading strains has recently emerged as a promising alternative. Whole-genome sequencing was used to obtain full genomes for metaldehyde degraders Acinetobacter calcoaceticus E1 and Sphingobium CMET-H. For the former, the genetic context of the metaldehyde-degrading genes had not been explored, while for the latter, none of the degrading genes themselves had been identified. In A. calcoaceticus E1, IS91 and IS6-family insertion sequences (ISs) were found surrounding the metaldehyde-degrading gene cluster located in plasmid pAME76. This cluster was located in closely-related plasmids and associated to identical ISs in most metaldehyde-degrading β- and γ-Proteobacteria, indicating horizontal gene transfer (HGT). For Sphingobium CMET-H, sequence analysis suggested a phytanoyl-CoA family oxygenase as a metaldehyde-degrading gene candidate due to its close homology to a previously identified metaldehyde-degrading gene known as mahX. Heterologous gene expression in Escherichia coli alongside degradation tests verified its functional significance and the degrading gene homolog was henceforth called mahS. It was found that mahS is hosted within the conjugative plasmid pSM1 and its genetic context suggested a crossover between the metaldehyde and acetoin degradation pathways. Here, specific replicons and ISs responsible for maintaining and dispersing metaldehyde-degrading genes in α, β and γ-Proteobacteria through HGT were identified and described. In addition, a homologous gene implicated in the first step of metaldehyde utilisation in an α-Proteobacteria was uncovered. Insights into specific steps of this possible degradation pathway are provided.Item Open Access Establishment of local wastewater-based surveillance programmes in response to the spread and infection of COVID-19 – case studies from South Africa, the Netherlands, Turkey and England(IWA, 2022-02-07) Tlhagale, M.; Liphadzi, S.; Bhagwan, J.; Naidoo, V.; Jonas, K.; van Vuuren, L.; Medema, Gertjan; Andrews, L.; Béen, F.; Lousada-Ferreira, Maria; Saatci, Ahmet Mete; Alpaslan Kocamemi, B.; Hassard, Francis; Singer, Andrew C.; Bunce, J. T.; Grimsley, J. M. S.; Brown, M.; Jones, Davey L.The COVID-19 pandemic has resulted in over 340 million infection cases (as of 21 January 2022) and more than 5.57 million deaths globally. In reaction, science, technology and innovation communities across the globe have organised themselves to contribute to national responses to COVID-19 disease. A significant contribution has been from the establishment of wastewater-based epidemiological (WBE) surveillance interventions and programmes for monitoring the spread of COVID-19 in at least 55 countries. Here, we examine and share experiences and lessons learnt in establishing such surveillance programmes. We use case studies to highlight testing methods and logistics considerations associated in scaling the implementing of such programmes in South Africa, the Netherlands, Turkey and England. The four countries were selected to represent different regions of the world and the perspective based on the considerable progress made in establishing and implementing their national WBE programmes. The selected countries also represent different climatic zones, economies, and development stages, which influence the implementation of national programmes of this nature and magnitude. In addition, the four countries' programmes offer good experiences and lessons learnt since they are systematic, and cover extensive areas, disseminate knowledge locally and internationally and partnered with authorities (government). The programmes also strengthened working relations and partnerships between and among local and global organisations. This paper shares these experiences and lessons to encourage others in the water and public health sectors on the benefits and value of WBE in tackling SARS-CoV-2 and related future circumstances.