CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hajeri, Falah Al"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analytical and numerical assessment of the effect of highly conductive inclusions distribution on the thermal conductivity of particulate composites
    (SAGE, 2019-04-10) Khan, Kamran Ahmed; Hajeri, Falah Al; Khan, Muhammad A.
    Highly conductive composites have found applications in thermal management, and the effective thermal conductivity plays a vital role in understanding the thermo-mechanical behavior of advanced composites. Experimental studies show that when highly conductive inclusions embedded in a polymeric matrix the particle forms conductive chain that drastically increase the effective thermal conductivity of two-phase particulate composites. In this study, we introduce a random network three dimensional (3D) percolation model which closely represent the experimentally observed scenario of the formation of the conductive chain by spherical particles. The prediction of the effective thermal conductivity obtained from percolation models is compared with the conventional micromechanical models of particulate composites having the cubical arrangement, the hexagonal arrangement and the random distribution of the spheres. In addition to that, the capabilities of predicting the effective thermal conductivity of a composite by different analytical models, micromechanical models, and, numerical models are also discussed and compared with the experimental data available in the literature. The results showed that random network percolation models give reasonable estimates of the effective thermal conductivity of the highly conductive particulate composites only in some cases. It is found that the developed percolation models perfectly represent the case of conduction through a composite containing randomly suspended interacting spheres and yield effective thermal conductivity results close to Jeffery's model. It is concluded that a more refined random network percolation model with the directional conductive chain of spheres should be developed to predict the effective thermal conductivity of advanced composites containing highly conductive inclusions.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback