CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Guo, Jianqiang"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Experimental study on water pipeline leak using in-pipe acoustic signal analysis and artificial neural network prediction
    (Elsevier, 2021-08-30) Wang, Wenming; Sun, Haibo; Guo, Jianqiang; Lao, Liyun; Wu, Shide; Zhang, Jifeng
    Water pipeline leakage is a common and significant global problem. In-pipe inspection based on hydrophone is one of the most direct, accurate, and reliable solutions for leak detection and recognition. In this study, a scheme of in-pipe detector was designed to pick up and identify acoustic signal due to leak. To investigate the characteristic of acoustic signal, an experimental platform was built to simulate the leaks and obtain acoustic signals under different leak conditions in an industrial scale water pipeline. Because a decreased pressure as leak has an unstable fluctuation in time domain, the frequency composition of the signal was analyzed in frequency domain, and then the change of frequency amplitude can be referenced to recognize the leaks. Moreover, the effects of leak size, pipeline pressure, and water flow rate on the characteristic of acoustic signal were investigated. The results show that the signal’s intensity under leak conditions are significantly higher than that of no leak case, and it will increase as the increased leak size; the signal intensity under no leak case will increase with the growth of pipeline pressure; the flow velocity has little effect on the signal intensity. To increase the recognition accuracy, an artificial neural network model was developed for the leak prediction, and 18 cases through additional tests were selected to validate the accuracy of model. Comparing experimental and prediction results, maximum relative error is within 10.0%. It indicates that the prediction model has a reasonable accuracy for the leak recognition.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback