Browsing by Author "Goel, Saurav"
Now showing 1 - 20 of 89
Results Per Page
Sort Options
Item Open Access Additive manufacturing and physicomechanical characteristics of PEGDA hydrogels: recent advances and perspective for tissue engineering(MDPI, 2023-05-17) Khalili, Mohammad Hakim; Zhang, Rujing; Wilson, Sandra; Goel, Saurav; Impey, Susan A.; Aria, Adrianus IndratIn this brief review, we discuss the recent advancements in using poly(ethylene glycol) diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to achieve desirable functionalities. Unlike previous reviews that focused solely on material design and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical, chemical, bulk, and localized mechanical characteristics, including their composition, fabrication methods, experimental conditions, and reported mechanical properties of bulk and 3D printed PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer (LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.Item Open Access Addressing the discrepancy of finding equilibrium melting point of silicon using MD simulations(The Royal Society, 2017-06-07) Chavoshi, Saeed Z.; Xu, Shuozhi; Goel, SauravWe performed molecular dynamics simulations to study the equilibrium melting point of silicon using (i) the solid–liquid coexistence method and (ii) the Gibbs free energy technique, and compared our novel results with the previously published results obtained from the Monte Carlo (MC) void-nucleated melting method based on the Tersoff-ARK interatomic potential (Agrawal et al. Phys. Rev. B 72, 125206. (doi:10.1103/PhysRevB.72.125206)). Considerable discrepancy was observed (approx. 20%) between the former two methods and the MC void-nucleated melting result, leading us to question the applicability of the empirical MC void-nucleated melting method to study a wide range of atomic and molecular systems. A wider impact of the study is that it highlights the bottleneck of the Tersoff-ARK potential in correctly estimating the melting point of silicon.Item Open Access An analytical model to predict the depth of sub-surface damage for grinding of brittle materials(Elsevier, 2021-05-15) Yin, Jingfei; Bai, Qian; Goel, Saurav; Zhou, Ping; Zhang, BiThis paper proposes an analytical model for predicting grinding-induced sub-surface damage depth in a silicon wafer. The model integrates the dislocation kinetics for crack initiation and fracture mechanics for crack propagation for the first time. Unlike other conventional models, the proposed model considers the effects of strain rate on damage depth and the dynamically changing metastable phase change properties. The model is verified by grinding experiments and a comparison of theoretical and experimental results shows a good quantitative agreement. It is found that increasing grinding speed and decreasing depth of cut cause a higher strain rate so as to enhance material brittleness, which is favorable to achieving low sub-surface damage. These findings will pave a way towards optimizing the grinding parameters and greatly improving the production efficiency of hard and brittle materialsItem Open Access Application of thermal spray coatings in electrolysers for hydrogen production: advances, challenges, and opportunities(Wiley, 2022-10-14) Faisal, Nadimul Haque; Prathuru, Anil; Ahmed, Rehan; Rajendran, Vinooth; Hossain, Mamdud; Venkatachalapathy, Viswanathan; Katiyar, Nirmal Kumar; Li, Jing; Liu, Yuheng; Cai, Qiong; Horri, Bahman Amini; Thanganadar, Dhinesh; Sodhi, Gurpreet Singh; Patchigolla, Kumar; Fernandez, Carlos; Joshi, Shrikant; Govindarajan, Sivakumar; Kurushina, Victoria; Katikaneni, Sai; Goel, SauravThermal spray coatings have the advantage of providing thick and functional coatings from a range of engineering materials. The associated coating processes provide good control of coating thickness, morphology, microstructure, pore size and porosity, and residual strain in the coatings through selection of suitable process parameters for any coating material of interest. This review consolidates scarce literature on thermally sprayed components which are critical and vital constituents (e. g., catalysts (anode/cathode), solid electrolyte, and transport layer, including corrosion-prone parts such as bipolar plates) of the water splitting electrolysis process for hydrogen production. The research shows that there is a gap in thermally sprayed feedstock material selection strategy as well as in addressing modelling needs that can be crucial to advancing applications exploiting their catalytic and corrosion-resistant properties to split water for hydrogen production. Due to readily scalable production enabled by thermal spray techniques, this manufacturing route bears potential to dominate the sustainable electrolyser technologies in the future. While the well-established thermal spray coating variants may have certain limitations in the manner they are currently practiced, deployment of both conventional and novel thermal spray approaches (suspension, solution, hybrid) is clearly promising for targeted development of electrolysers.Item Open Access Areal artefact manufacturing using SPDT(2018-08) Zhao, Junguo; Giusca, Claudiu; Goel, SauravWith the increasing importance of the surface engineering, surface topography measuring instrument has been used in wider range of applications, which requires trustworthy calibration process to deliver traceability so that the instrument is able to give comparable and reliable measurement. The calibration standard / artefact is designed to transfer traceability easily and reliably. In current market, the feature of the artefact used for evaluation the surface topography measuring process are not sufficiently accurate. This insufficiency may be solved by using certain types of calibration standard specified in ISO standard however they are not commercially produced. In this project, one of the desired types called ‘radial sinusoidal shape’ was produce by SPDT (single point diamond turning) manufacturing method. The feature parameters of the artefact are designed to meet the instrument measurement requirement and the machining path is generated with consideration of the tooling geometry. To assess the repeatability in z direction of the turning machine, a step height experiment was designed and conducted. The measurement result indicates that the repeatability of the machine is unsatisfactory when the feed distance smaller than 100 nm. The wavelength and the amplitude of machined radial sinusoidal shape was measured by stylus profiler, followed by the measurement uncertainty analysis. The measurement result was compared with the design to evaluate quality of the manufacturing process. To estimate the systematic error of the profiler, CCI was used to measure the machined radial sinusoidal shape. The measurement result was also compared with the design.Item Open Access Atomic scale friction studies on single crystal gallium arsenide using atomic force microscope and molecular dynamics simulation(Springer, 2021-07-10) Fan, Pengfei; Goel, Saurav; Luo, Xichun; Upadhyaya, Hari M.This paper provides a fresh perspective and new insights on the nanoscale friction investigated using molecular dynamics simulation and atomic force microscope (AFM) nanoscratch experiments. The work considered Gallium Arsenide, an important III-V direct bandgap semiconductor material residing in the zinc-blende structure as a reference sample material due to its growing usage in 5G communication devices. In the simulations, the scratch depth was tested as a variable in the fine range of 0.5 nm to 3 nm to understand the behaviour of material removal as well as to gain insights into the nanoscale friction. Scratch force, normal force and average cutting forces were extracted from the simulation to obtain two scalar quantities namely, the scratch cutting energy (defined as the work done in removing a unit volume of material) and kinetic coefficient of friction (defined as the force ratio). A strong size effect was observed for scratch depths below 2 nanometres from the MD simulations and about 15 nm from the AFM experiments. A strong quantitative corroboration was obtained between the MD simulations and the AFM experiments in the specific scratch energy and more qualitative corroboration with the pile up and the kinetic coefficient of friction. This conclusion suggested that the specific scratch energy is insensitive to the tool geometry and the speed of scratch used in this investigation but the pile up and kinetic coefficient of friction are dependent on the geometry of the tool tipItem Open Access Atomistic investigation on the structure-property relationship during thermal spray nanoparticle impact(Elsevier, 2013-12-31) Goel, Saurav; Faisal, Nadimul Haque; Ratia, Vilma; Agrawal, Anupam; Stukowski, AlexanderDuring thermal spraying, hot particles impact on a colder substrate. This interaction of crystalline copper nanoparticles and copper substrate is modeled, using MD simulation. The quantitative results of the impacts at different velocities and temperatures are evaluated using a newly defined flattening aspect ratio. This ratio between the maximum diameter after the impact and the height of the splat increases with increasing Reynolds numbers until a critical value is reached. At higher Reynolds numbers the flattening aspect ratio decreases again, as the kinetic energy of the particle leads to increasing substrate temperature and, therefore, decreases the substrate resistance. Thus, the particle penetrates into the substrate and deforms less.Item Open Access An atomistic investigation on the wear of diamond during atomic force microscope tip-based nanomachining of gallium arsenide(Elsevier, 2020-10-30) Fan, Pengfei; Goel, Saurav; Luo, Xichun; Yan, Yongda; Geng, Yanquan; Wang, YuzhangThis paper investigated the wear mechanism of diamond during the atomic force microscope (AFM) tip-based nanomachining of Gallium Arsenide (GaAs) using molecular dynamics (MD) simulations. The elastic-plastic deformation at the apex of the diamond tip was observed during the simulations. Meanwhile, a transition of the diamond tip from its initial cubic diamond lattice structure sp3 hybridization to graphite lattice structure sp2 hybridization was revealed. Graphitization was, therefore, found to be the dominant wear mechanism of the diamond tip during the nanometric cutting of single crystal gallium arsenide for the first time. The various stress states, such as hydrostatic stress, shear stress, and von Mises stress within the diamond tip and the temperature distribution of the diamond tip were also estimated to find out the underlying mechanism of graphitization. The results showed that the cutting heat during nanomachining of GaAs would mainly lead to the graphitization of the diamond tip instead of the high shear stress-induced transformation of the diamond to graphite. The paper also proposed a new approach to quantify the graphitization conversion rate of the diamond tipItem Open Access Bactericidal surfaces: an emerging 21st century ultra-precision manufacturing and materials puzzle(American Institute of Physics (AIP), 2021-04-06) Larrañaga-Altuna, Mikel; Zabala, Alaitz; Llavori, Iñigo; Pearce, Oliver; Nguyen, Dinh T.; Caro, Jaume; Mescheder, Holger; Endrino, José L.; Goel, Gaurav; Ayre, Wayne Nishio; Seenivasagam, Rajkumar Kottayasamy; Tripathy, Debendra Kumar; Armstrong, Joe; Goel, SauravProgress made by materials scientists in recent years has greatly helped the field of ultra-precision manufacturing. Ranging from healthcare to electronics components, phenomena such as twinning, dislocation nucleation and high-pressure phase transformation have helped to exploit plasticity across a wide range of metallic and semiconductor materials. One current problem at the forefront of the healthcare sector that can benefit from these advances is that of bacterial infections in implanted prosthetic devices. The treatment of implant infections is often complicated by the growth of bacterial biofilms on implant surfaces, which form a barrier that effectively protects the infecting organisms from host immune defences and exogenous antibiotics. Further surgery is usually required to disrupt the biofilm, or to remove the implant altogether to permit antibiotics to clear the infection, incurring considerable cost and healthcare burdens. In this review, we focus on elucidating aspects of bactericidal surfaces inspired by the biological world to inform the design of implant surface treatments that will suppress bacterial colonization. Alongside manufacturing and materials related challenges, the review identifies the most promising natural bactericidal surfaces and provides representative models of their structure, highlighting the importance of the critical slope presented by these surfaces. The scalabl production of these complex hierarchical structures on freeform metallic implant surfaces has remained a scientific challenge to date and as identified by this review, is one of the many 21st Century puzzles to be addressed by the field of applied physics.Item Open Access Bactericidal Surfaces: An Emerging 21st Century Ultra-Precision Manufacturing and Materials Puzzle(Cranfield University, 2020-12-14 09:29) Goel, Saurav; Goel, Gaurav; Larrañaga Altuna, MikelFiguresItem Open Access Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V(Elsevier, 2019-05-12) Liu, Cen; Goel, Saurav; Llavori, Iñigo; Stolf, Pietro; Giusca, Claudiu L.; Zabala, Alaitz; Kohlscheen, Joern; Paiva, Jose Mario; Endrino, José L.; Veldhuis, Stephen C.; Fox-Rabinovich, German S.Use of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed. This paper examines the extant literature to review these models and provides quantitative benchmarking against the tabulated material model and a power law model of Ti6Al4V taking the test case of a uniaxial tensile and cutting simulation.Item Open Access Black phosphorus: the rise of phosphorene in 2D materials applications(Elsevier, 2024-05-03) Mishra, Raghvendra Kumar; Sarkar, Jayati; Chianella, Iva; Goel, Saurav; Nezhad, Hamed YazdaniFew layers Black phosphorus (BP) and phosphorene are two-dimensional (2D) materials renowned for their adjustable bandgaps, high carrier mobility, and anisotropic conductivity, which make them highly promising for applications in the visible and infrared spectrum. The incorporation of these materials into polymer matrices has led to significant advancements in material science, resulting in nanocomposites with enhanced mechanical, electrical, and optical properties. This article provides a thorough analysis of BP/phosphorene polymer nanocomposites, including synthesis techniques (such as exfoliation methods) and manufacturing approaches. Advanced characterisation techniques are utilised to assess the structure, morphology, and properties of these composites. The article highlights the potential applications of these materials in energy storage (e.g., high-capacity batteries), flexible electronics (e.g., bendable displays), environmental sensing, and emerging biomedical fields such as targeted drug delivery. Furthermore, the article discusses potential solutions to tackle the challenges associated with the scalable, cost-effective production and ambient stability of BP/phosphorene, leveraging recent advancements in engineering research. The conclusion outlines future research directions, emphasising the importance of addressing persistent challenges through technological breakthroughs and exploring potential avenues for further advancement.Item Open Access Borophene: a 2D wonder shaping the future of nanotechnology and materials science(Elsevier, 2024-05-10) Mishra, Raghvendra Kumar; Sarkar, Jayati; Verma, Kartikey; Chianella, Iva; Goel, Saurav; Nezhad, Hamed YazdaniTwo-dimensional (2D) materials have attracted considerable research interest due to their precisely defined properties and versatile applications. In this realm, borophene - a single atomic sheet of boron atoms arranged in a honeycomb lattice - has emerged as a promising candidate. While borophenes were theoretically predicted to have unique structural, optical, and electronic properties, the experimental synthesis of crystalline borophene sheets was first demonstrated on metal substrates in 2015, marking a crucial milestone. Since then, research efforts have focused on controlling the synthesis of semiconducting borophene polymorphs and exploring their novel physical characteristics. This review aims to explore the potential of 2D materials, specifically borophene, in various technological fields such as batteries, supercapacitors, fuel cells, and more. The analysis emphasises meticulous scrutiny of synthesis techniques due to their fundamental importance in realising borophene's properties. Specifically, the high carrier mobilities, tuneable bandgaps, and exceptional thermal conductivity of borophene are highlighted. By providing a comprehensive outlook on the significance of borophene in advancing materials science and technologies, this review contributes to shaping the landscape of 2D material research.Item Open Access Brittle ductile transition during diamond turning of single crystal silicon carbide(Elsevier Science B.V., Amsterdam., 2013-02-28T00:00:00Z) Goel, Saurav; Luo, Xichun; Comley, Paul; Reuben, Robert L.; Cox, AndrewIn this experimental study, diamond turning of single crystal 6H-SiC was performed at a cutting speed of 1 m/sec on an ultra precision diamond turning machine (Moore Nanotech 350 UPL) to elucidate the microscopic origin of ductile-regime machining. Distilled water (pH value 7) was used as a preferred coolant during the course of machining in order to improve the tribological performance. A high magnification scanning electron microscope (SEM) (FIB- FEI Quanta 3D FEG) was used to examine the cutting tool. A surface finish of Ra 9.2 nm, better than any previously reported value on SiC was obtained. Also, tremendously high cutting resistance was offered by SiC resulting in the observation of significant wear marks on the cutting tool just after 1 Km of cutting length. It was found out through a DXR Raman microscope that similar to other classical brittle materials (silicon and germanium etc.) an occurrence of brittle-ductile transition is responsible for the ductile-regime machining of 6H-SiC. It has also been demonstrated that the structural phase transformations associated with the diamond turning of brittle materials which is normally considered as a prerequisite to ductile-regime machining, may not well be realized during machining of polycrystalline materials, yet, ductile-regime exploitation is possible.Item Open Access Characterization and modelling the mechanical behaviour of poly(l-lactic acid) for the manufacture of bioresorbable vascular scaffolds by stretch blow moulding(Springer, 2019-01-10) Wei, Huidong; Yan, Shiyong; Goel, Saurav; Menary, GaryBioresorbable Vascular Scaffolds (BVS) manufactured from poly (l-lactic acid) (PLLA) offer an alternative to metal scaffolds for the treatment of coronary heart disease. One of the key steps in the manufacture of these scaffolds is the stretch blow moulding process where the PLLA is biaxially stretched above glass transition temperature (Tg), inducing biaxial orientation and thus increasing ductility, strength and stiffness. To optimise the manufacture and performance of these scaffolds it is important to understand the influence of temperature and strain rate on the constitutive behaviour of PLLA in the blow moulding process. Experiments have been performed on samples of PLLA on a custom built biaxial stretch testing machine to replicate conditions typically experienced during blow moulding i.e. in a temperature range from 70 °C to 100 °C and at strain rates of 1 s−1, 4 s−1 and 16 s−1 respectively. The data is subsequently used to calibrate a nonlinear viscoelastic material model to represent the deformation behaviour of PLLA in the blow moulding process. The results highlight the significance of temperature and strain rate on the yielding and strain hardening behaviour of PLLA and the ability of the selected model to capture it.Item Open Access Clay swelling: role of cations in stabilizing/destabilizing mechanisms(ACS, 2022-01-17) Chen, Wen L.; Grabowski, Robert C.; Goel, SauravThe stepwise hydration of clay minerals has been observed repeatedly in studies, but the underlying mechanism remains unclear. Previous numerical studies confirmed the presence of one-water layer (1W) and two-water layer (2W) hydration states. However, the undisturbed transition between these hydration states has never been captured. Using molecular dynamics simulation, this study (i) simulated for the first time the free 1W–2W transition during clay hydration and (ii) identified the underlying mechanism to be the detachment of cations from the clay surface and the formation of a shell of water molecules around the cation. The swelling dynamics of clay was found to be affected by the clay charge, clay mineralogy, and counterions through complex cation–clay interactions, cation hydration capacity, and cation migration rate.Item Open Access Comment on "Incipient plasticity of diamond during nanoindentation" by C. Xu, C. Liu and H. Wang, RSC Advances, 2017, 7, 36093(Royal Society of Chemistry, 2018-01-31) Goel, Saurav; Stukowski, AlexanderA recent molecular dynamics simulation study on nanoindentation of diamond carried out by Xu et al. 1 has reported observation of the presence of a controversial hexagonal lonsdaleite phase of carbon in the indentation area. In this comment, we question the reported observation and attribute this anomaly to shortcomings of the long range bond order potential (LCBOP) employed in the nanoindentation study.Item Open Access Computational prediction of electrical and thermal properties of graphene and BaTiO3 reinforced epoxy nanocomposites(Eurasia Academic Publishing Group (EAPG), 2021-10-20) Mishra, Raghvendra Kumar; Goel, Saurav; Yazdani Nezhad, HamedGraphene based materials e.g., graphene oxide (GO), reduced graphene oxide (RGO) and graphene nano platelets (GNP) as well as Barium titanate (BaTiO3) are emerging reinforcing agents which upon mixing with epoxy provides composite materials with superior mechanical, electrical and thermal properties as well as shielding against electromagnetic (EM) radiations. Inclusion of the thesereinforcing agents shows improvedperformance;however, the extent of improvement has remained uncertain. In this study, a computational modelling approach was adopted using COMSOL Multiphysics software in conjunction with Bayesian statistical analysis to investigate the effects of including various filler materials e.g.,GO, RGO, GNP and BaTiO3 in influencing the direct current (DC) conductivity (σ), dielectric constant (ε) and thermal properties on the resulting epoxy polymer matrix composites. The simulations were performed for different volume percentage of the filler materials by varying the geometry of the filler material. It was observed that the content of GO, RGO, GNPs and the thickness of graphene nanoplatelets can alter the DC conductivity, dielectric constant, and thermal properties of the epoxy matrix. The lower thickness of GNPs was found to offer the larger value of DC conductivity, thermal conductivity and thermal diffusivity than rest of the graphene nanocomposites, while the RGO showed better dielectric constant value than neat epoxy, and graphenenanocomposites. Similarly, the percentage content and size (diameter) of BaTiO3nanoparticles were observed to alter the dielectric constant, DC conductivity and thermal properties of modified epoxy by several order of magnitude than neat epoxy. In this way, the higher diameter particles of BaTiO3showed better DC conductivity properties, dielectric constant value, thermal conductivity and thermal diffusivity.Item Open Access The critical raw materials in cutting tools for machining applications: a review(MDPI, 2020-03-18) Rizzo, Antonella; Goel, Saurav; Grilli, Maria Luisa; Iglesias, Roberto; Jaworska, Lucyna; Lapkovskis, Vjaceslavs; Novak, Pavel; Postolnyi, Bogdan O.; Valerini, DanieleA variety of cutting tool materials are used for the contact mode mechanical machining of components under extreme conditions of stress, temperature and/or corrosion, including operations such as drilling, milling turning and so on. These demanding conditions impose a seriously high strain rate (an order of magnitude higher than forming), and this limits the useful life of cutting tools, especially single-point cutting tools. Tungsten carbide is the most popularly used cutting tool material, and unfortunately its main ingredients of W and Co are at high risk in terms of material supply and are listed among critical raw materials (CRMs) for EU, for which sustainable use should be addressed. This paper highlights the evolution and the trend of use of CRMs) in cutting tools for mechanical machining through a timely review. The focus of this review and its motivation was driven by the four following themes: (i) the discussion of newly emerging hybrid machining processes offering performance enhancements and longevity in terms of tool life (laser and cryogenic incorporation); (ii) the development and synthesis of new CRM substitutes to minimise the use of tungsten; (iii) the improvement of the recycling of worn tools; and (iv) the accelerated use of modelling and simulation to design long-lasting tools in the Industry-4.0 framework, circular economy and cyber secure manufacturing. It may be noted that the scope of this paper is not to represent a completely exhaustive document concerning cutting tools for mechanical processing, but to raise awareness and pave the way for innovative thinking on the use of critical materials in mechanical processing tools with the aim of developing smart, timely control strategies and mitigation measures to suppress the use of CRMs.Item Open Access Critical review of nanopillar-based mechanobactericidal systems(American Chemical Society, 2022-01-05) Hawi, Sara; Goel, Saurav; Kumar, Vinod; Pearce, Oliver; Nishio Ayre, Wayne; Ivanova, Elena P.The rise of multidrug-resistant bacteria is the biggest threat to human health globally, as described by the World Health Organization. Mechanobactericidal surfaces provide a sustainable approach to addressing this concern by eradicating pathogens, especially bacteria, “right-at-the-point” of contacting the surface. However, the lack of a “design to manufacture” approach due to our limited understanding of the mechanobactericidal mechanism has impeded engineering optimization to develop scalable exploitation routes in various healthcare applications. It can be argued that the reason, most particularly, is the limitations and uncertainties associated with the current instrumentation and simulation capabilities, which has led to several streams of test protocols. This review highlights the current understanding on the mechanobactericidal mechanisms in light of the contributing factors and various techniques that are used to postulate these mechanisms. The review offers a critique on the variations observed on how nanostructured surfaces found in the literature have been evaluated such that the test protocols and outcomes are incomparable. The review also shows a strong need for developing more accurate models of a bacterium because the currently reported experimental data are insufficient to develop bacterial material models (constitutive equations). The review also alludes to the scarcity of direct experimental evidence of the mechanobactericidal mechanism, suggesting a strong need for further in situ monitoring as a future research direction.