Browsing by Author "Geraki, Kalotina"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Prostate microcalcification crystallography as a marker of pathology(Springer, 2025-04-29) Gosling, Sarah B.; Arnold, Emily L.; Adams, Lois; Cool, Paul; Geraki, Kalotina; Kitchen, Mark O.; Lyburn, Iain D.; Rogers, Keith D.; Snow, Tim; Stone, Nick; Greenwood, Charlene E.Prostate cancer remains the most common male cancer; however, treatment regimens remain unclear in some cases due to a lack of agreement in current testing methods. Therefore, there is an increasing need to identify novel biomarkers to better counsel patients about their treatment options. Microcalcifications offer one such avenue of exploration. Microfocus spectroscopy at the i18 beamline at Diamond Light Source was utilised to measure X-ray diffraction and fluorescence maps of calcifications in 10 µm thick formalin fixed paraffin embedded prostate sections. Calcifications predominantly consisted of hydroxyapatite (HAP) and whitlockite (WH). Kendall’s Tau statistics showed weak correlations of ‘a’ and ‘c’ lattice parameters in HAP with GG (rτ = − 0.323, p = 3.43 × 10–4 and rτ = 0.227, p = 0.011 respectively), and a negative correlation of relative zinc levels in soft tissue (rτ = − 0.240, p = 0.022) with GG. Negative correlations of the HAP ‘a’ axis (rτ = − 0.284, p = 2.17 × 10–3) and WH ‘c’ axis (rτ = − 0.543, p = 2.83 × 10–4) with pathological stage were also demonstrated. Prostate calcification chemistry has been revealed for the first time to correlate with clinical markers, highlighting the potential of calcifications as biomarkers of prostate cancer.Item Open Access Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections(2016-09-28) Scott, Robert; Stone, Nicholas; Kendall, Catherine; Geraki, Kalotina; Rogers, KeithCalcifications are not only one of the most important early diagnostic markers of breast cancer, but are also increasingly believed to aggravate the proliferation of cancer cells and invasion of surrounding tissue. Moreover, this influence appears to vary with calcification composition. Despite this, remarkably little is known about the composition and crystal structure of the most common type of breast calcifications, and how this differs between benign and malignant lesions. We sought to determine how the phase composition and crystallographic parameters within calcifications varies with pathology, using synchrotron X-ray diffraction. This is the first time crystallite size and lattice parameters have been measured in breast calcifications, and we found that these both parallel closely the changes in these parameters with age observed in fetal bone. We also discovered that these calcifications contain a small proportion of magnesium whitlockite, and that this proportion increases from benign to in situ to invasive cancer. When combined with other recent evidence on the effect of magnesium on hydroxyapatite precipitation, this suggests a mechanism explaining observations that carbonate levels within breast calcifications are lower in malignant specimens.