CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Garcia Martinez, Miguel"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Discussion on density-based clustering methods applied for automated identification of airspace flows
    (IEEE, 2018-12-10) Verdonk Gallego, Christian Eduardo; Gómez Comendador, Victor Fernando; Saez Nieto, Francisco Javier; Garcia Martinez, Miguel
    Air Traffic Management systems generate a huge amount of track data daily. Flight trajectories can be clustered to extract main air traffic flows by means of unsupervised machine learning techniques. A well-known methodology for unsupervised extraction of air traffic flows conducts a two-step process. The first step reduces the dimensionality of the track data, whereas the second step clusters the data based on a density-based algorithm, DBSCAN. This paper explores advancements in density-based clustering such as OPTICS or HDBSCAN*. This assessment is based on quantitative and qualitative evaluations of the clustering solutions offered by these algorithms. In addition, the paper proposes a hierarchical clustering algorithm for handling noise in this methodology. This algorithm is based on a recursive application of DBSCAN* (RDBSCAN*). The paper demonstrates the sensitivity of these algorithms to different hyper-parameters, recommending a specific setting for the main one, which is common for all methods. RDBSCAN* outperforms the other algorithms in terms of the density-based internal validity metric. Finally, the outcome of the clustering shows that the algorithm extracts main clusters of the dataset effectively, connecting outliers to these main clusters.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback