Browsing by Author "Fu, Guangtao"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A model-based engineering methodology and architecture for resilience in systems-of-systems: a case of water supply resilience to flooding(MDPI, 2019-03-08) Joannou, Demetrios; Kalawsky, Roy; Saravi, Sara; Rivas Casado, Monica; Fu, Guangtao; Meng, FanlinThere is a clear and evident requirement for a conscious effort to be made towards a resilient water system-of-systems (SoS) within the UK, in terms of both supply and flooding. The impact of flooding goes beyond the immediately obvious socio-aspects of disruption, cascading and affecting a wide range of connected systems. The issues caused by flooding need to be treated in a fashion which adopts an SoS approach to evaluate the risks associated with interconnected systems and to assess resilience against flooding from various perspectives. Changes in climate result in deviations in frequency and intensity of precipitation; variations in annual patterns make planning and management for resilience more challenging. This article presents a verified model-based system engineering methodology for decision-makers in the water sector to holistically, and systematically implement resilience within the water context, specifically focusing on effects of flooding on water supply. A novel resilience viewpoint has been created which is solely focused on the resilience aspects of architecture that is presented within this paper. Systems architecture modelling forms the basis of the methodology and includes an innovative resilience viewpoint to help evaluate current SoS resilience, and to design for future resilient states. Architecting for resilience, and subsequently simulating designs, is seen as the solution to successfully ensuring system performance does not suffer, and systems continue to function at the desired levels of operability. The case study presented within this paper demonstrates the application of the SoS resilience methodology on water supply networks in times of flooding, highlighting how such a methodology can be used for approaching resilience in the water sector from an SoS perspective. The methodology highlights where resilience improvements are necessary and also provides a process where architecture solutions can be proposed and tested.Item Open Access Towards integrated flood risk and resilience management(MDPI, 2020-06-23) Fu, Guangtao; Meng, Fanlin; Rivas Casado, Monica; Kalawsky, RoyFlood resilience is an emerging concept for tackling extreme weathers and minimizing the associated adverse impacts. There is a significant knowledge gap in the study of resilience concepts, assessment frameworks and measures, and management strategies. This editorial introduces the latest advances in flood risk and resilience management, which are published in 11 papers in the Special Issue. A synthesis of these papers is provided in the following themes: hazard and risk analysis, flood behaviour analysis, assessment frameworks and metrics, and intervention strategies. The contributions are discussed in the broader context of the field of flood risk and resilience management and future research directions are identified for sustainable flood management.Item Open Access Use of artificial intelligence to improve resilience and preparedness against adverse flood events(MDPI, 2019-05-09) Saravi, Sara; Kalawsky, Roy; Joannou, Demetrios; Rivas Casado, Monica; Fu, Guangtao; Meng, FanlinThe main focus of this paper is the novel use of Artificial Intelligence (AI) in natural disaster, more specifically flooding, to improve flood resilience and preparedness. Different types of flood have varying consequences and are followed by a specific pattern. For example, a flash flood can be a result of snow or ice melt and can occur in specific geographic places and certain season. The motivation behind this research has been raised from the Building Resilience into Risk Management (BRIM) project, looking at resilience in water systems. This research uses the application of the state-of-the-art techniques i.e., AI, more specifically Machin Learning (ML) approaches on big data, collected from previous flood events to learn from the past to extract patterns and information and understand flood behaviours in order to improve resilience, prevent damage, and save lives. In this paper, various ML models have been developed and evaluated for classifying floods, i.e., flash flood, lakeshore flood, etc. using current information i.e., weather forecast in different locations. The analytical results show that the Random Forest technique provides the highest accuracy of classification, followed by J48 decision tree and Lazy methods. The classification results can lead to better decision-making on what measures can be taken for prevention and preparedness and thus improve flood resilience