CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Friedlingstein, Pierre"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5° C and 2° C global warming with a higher-resolution global climate model
    (The Royal Society Publishing, 2018-04-02) Betts, Richard A.; Alfieri, Lorenzo; Bradshaw, Catherine; Caesar, John; Feyen, Luc; Friedlingstein, Pierre; Gohar, Laila; Koutroulis, Aristeidis; Lewis, Kirsty; Morfopoulos, Catherine; Papadimitriou, Lamprini; Richardson, Katy J.; Tsanis, Ioannis; Wyser, Klaus
    We projected changes in weather extremes, hydrological impacts and vulnerability to food insecurity at global warming of 1.5°C and 2°C relative to pre-industrial, using a new global atmospheric general circulation model HadGEM3A-GA3.0 driven by patterns of sea-surface temperatures and sea ice from selected members of the 5th Coupled Model Intercomparison Project (CMIP5) ensemble, forced with the RCP8.5 concentration scenario. To provide more detailed representations of climate processes and impacts, the spatial resolution was N216 (approx. 60 km grid length in mid-latitudes), a higher resolution than the CMIP5 models. We used a set of impacts-relevant indices and a global land surface model to examine the projected changes in weather extremes and their implications for freshwater availability and vulnerability to food insecurity. Uncertainties in regional climate responses are assessed, examining ranges of outcomes in impacts to inform risk assessments. Despite some degree of inconsistency between components of the study due to the need to correct for systematic biases in some aspects, the outcomes from different ensemble members could be compared for several different indicators. The projections for weather extremes indices and biophysical impacts quantities support expectations that the magnitude of change is generally larger for 2°C global warming than 1.5°C. Hot extremes become even hotter, with increases being more intense than seen in CMIP5 projections. Precipitation-related extremes show more geographical variation with some increases and some decreases in both heavy precipitation and drought. There are substantial regional uncertainties in hydrological impacts at local scales due to different climate models producing different outcomes. Nevertheless, hydrological impacts generally point towards wetter conditions on average, with increased mean river flows, longer heavy rainfall events, particularly in South and East Asia with the most extreme projections suggesting more than a doubling of flows in the Ganges at 2°C global warming. Some areas are projected to experience shorter meteorological drought events and less severe low flows, although longer droughts and/or decreases in low flows are projected in many other areas, particularly southern Africa and South America. Flows in the Amazon are projected to decline by up to 25%. Increases in either heavy rainfall or drought events imply increased vulnerability to food insecurity, but if global warming is limited to 1.5°C, this vulnerability is projected to remain smaller than at 2°C global warming in approximately 76% of developing countries. At 2°C, four countries are projected to reach unprecedented levels of vulnerability to food insecurity. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Indicate separate contributions of long-lived and short-lived greenhouse gases in emission targets
    (Springer Nature, 2022-01-28) Allen, Myles R.; Peters, Glen P.; Shine, Keith P.; Azar, Christian; Balcombe, Paul; Boucher, Olivier; Cain, Michelle; Ciais, Philippe; Collins, William; Forster, Piers M.; Frame, Dave J.; Friedlingstein, Pierre; Fyson, Claire; Gasser, Thomas; Hare, Bill; Jenkins, Stuart; Hamburg, Steven P.; Johansson, Daniel J. A.; Lynch, John; Macey, Adrian; Morfeldt, Johannes; Nauels, Alexander; Ocko, Ilissa; Oppenheimer, Michael; Pacala, Stephen W.; Pierrehumbert, Raymond; Rogelj, Joeri; Schaeffer, Michiel; Schleussner, Carl F.; Shindell, Drew; Skeie, Ragnhild B.; Smith, Stephen M.; Tanaka, Katsumasa
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Quantifying non-CO2 contributions to remaining carbon budgets
    (Nature Publishing Group, 2021-10-14) Jenkins, Stuart; Cain, Michelle; Friedlingstein, Pierre; Gillett, Nathan; Walsh, Tristram; Allen, Myles R.
    The IPCC Special Report on 1.5 °C concluded that anthropogenic global warming is determined by cumulative anthropogenic CO2 emissions and the non-CO2 radiative forcing level in the decades prior to peak warming. We quantify this using CO2-forcing-equivalent (CO2-fe) emissions. We produce an observationally constrained estimate of the Transient Climate Response to cumulative carbon Emissions (TCRE), giving a 90% confidence interval of 0.26–0.78 °C/TtCO2, implying a remaining total CO2-fe budget from 2020 to 1.5 °C of 350–1040 GtCO2-fe, where non-CO2 forcing changes take up 50 to 300 GtCO2-fe. Using a central non-CO2 forcing estimate, the remaining CO2 budgets are 640, 545, 455 GtCO2 for a 33, 50 or 66% chance of limiting warming to 1.5 °C. We discuss the impact of GMST revisions and the contribution of non-CO2 mitigation to remaining budgets, determining that reporting budgets in CO2-fe for alternative definitions of GMST, displaying CO2 and non-CO2 contributions using a two-dimensional presentation, offers the most transparent approach.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback