CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fornara, Dario A."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Land use change and soil carbon pools: Evidence from a long-term silvopastoral
    (Springer, 2017-09-23) Fornara, Dario A.; Olave, Rodrigo; Burgess, Paul; Delmer, Aude; Upson, Matthew; McAdam, Jim
    Multi-functional silvopastoral systems provide a wide range of services to human society including the regulation of nutrients and water in soils and the sequestration of atmospheric carbon dioxide (CO2). Although silvopastoral systems significantly contribute to enhance aboveground carbon (C) sequestration (e.g. C accumulation in woody plant biomass), their long-term effects on soil C pools are less clear. In this study we performed soil physical fractionation analyses to quantify the C pool of different aggregate fractions across three land use types including (1) silvopastoral system with ash trees (Fraxinus excelsior L.), (2) planted woodland with ash trees, and (3) permanent grassland, which were established in 1989 at Loughgall, Northern Ireland, UK. Our results show that 26 years after the conversion of permanent grassland to either silvopastoral or woodland systems, soil C (and N) stocks (0–20 cm depth) did not significantly change between the three land use types. We found, however, that permanent grassland soils were associated with significantly higher C pools (g C kg−1 soil; P < 0.03) of the large macro-aggregate fraction (> 2 mm) whereas soil C pools of the micro-aggregate (53–250 μm) and silt and clay (< 53 μm) fractions were significantly higher in the silvopastoral and woodland systems (P < 0.05). A key finding of this study is that while tree planting on permanent grassland may not contribute to greater soil C stocks it may, in the long-term, increase the C pool of more stable (recalcitrant) soil micro-aggregate and silt and clay fractions, which could be more resilient to environmental change.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback