Browsing by Author "Fleet, Thomas"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Open Access A machine learning approach to model interdependencies between dynamic response and crack propagation(MDPI, 2020-11-30) Fleet, Thomas; Kamei, Khangamlung; He, Feiyang; Khan, Muhammad A.; Khan, Kamran Ahmed; Starr, AndrewAccurate damage detection in engineering structures is a critical part of structural health monitoring. A variety of non-destructive inspection methods has been employed to detect the presence and severity of the damage. In this research, machine learning (ML) algorithms are used to assess the dynamic response of the system. It can predict the damage severity, damage location, and fundamental behaviour of the system. Fatigue damage data of aluminium and ABS under coupled mechanical loads at different temperatures are used to train the model. The model shows that natural frequency and temperature appear to be the most important predictive features for aluminium. It appears to be dominated by natural frequency and tip amplitude for ABS. The results also show that the position of the crack along the specimen appears to be of little importance for either material, allowing simultaneous prediction of location and damage severity