Browsing by Author "Fitzmaurice, Brianna C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Open Access Bacterial survival following shock compression in the GigaPascal range(Elsevier, 2017-09-01) Hazael, Rachael; Fitzmaurice, Brianna C.; Foglia, F.; Appleby-Thomas, Gareth J.; McMillan, P. F.The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time dependent strain rate.Item Open Access The effects of quasi-one-dimensional shock on Escherichia coli while controlling pressure and temperature(Elsevier, 2020-11-28) Fitzmaurice, Brianna C.; Appleby-Thomas, Gareth J.; Painter, Jonathan; Wood, David C.; Hazael, RachaelThe response of microorganisms to high pressures is of growing interest in the literature, regarding areas of research including the sterilisation of foodstuffs, panspermia and, more generally, the study of extremophiles. When examining organisms under shock pressure, there are a number of caveats that need to be considered, including temperature and the nature of the shock wave front. Both of these caveats have been explored in this study through the application of the plate impact technique to create quasi-one-dimensional shock waves with controlled shock fronts through bacterial targets. This was achieved using typical planar flyer plates to study the dynamic pressure response of the bacterium, Escherichia coli NCTC 10538. Additionally, in order to create an adiabatic, off-Hugoniot loading path, a novel graded areal density flyer produced by the Surfi-Sculpt® approach was used to assess the effects of lowering temperature during shock on E. coli growth rates. The maximum temperature generated by a Surfi-Sculpt® flyer impact was 5 K less than that produced by the planar flyer analogue. Higher growth rates of bacterial colonies post-impact by the Surfi-Sculpt® flyer compared to those by the planar flyer were observed, with this behaviour determined to be a possible function of the nature, although temperature was also decreased with the use of this adiabatic ramp loading technique. In an effort to purposefully increase pressure and temperature for the E. coli samples, a modified form of a previously developed bacterial encapsulation system was also employed in this study, allowing pressures of up to 10 GPa and growth rates of up to 0.09% to be reached.Item Open Access Investigation of the high-strain rate (shock and ballistic) response of the elastomeric tissue simulant Perma-Gel®(Elsevier, 2016-04-01) Appleby-Thomas, Gareth J.; Wood, D. C.; Hameed, Amer; Painter, Jonathan; Le-Seelleur, V.; Fitzmaurice, Brianna C.For both ethical and practical reasons accurate tissue simulant materials are essential for ballistic testing applications. A wide variety of different materials have been previously adopted for such roles, ranging from gelatin to ballistics soap. However, while often well characterised quasi-statically, there is typically a paucity of information on the high strain-rate response of such materials in the literature. Here, building on previous studies by the authors on other tissue analogues, equation-of-state data for the elastomeric epithelial/muscular simulant material Perma-Gel® is presented, along with results from a series of ballistic tests designed to illustrate its impact-related behaviour. Comparison of both hydrodynamic and ballistic behaviour to that of comparable epithelial tissues/analogues (Sylgard® and porcine muscle tissue) has provided an insight into the applicability of both Perma-Gel® and, more generally, monolithic simulants for ballistic testing purposes. Of particular note was an apparent link between the high strain-rate compressibility (evidenced in the Hugoniot relationship in the Us-up plane) and subsequent ballistic response of these materials. Overall, work conducted in this study highlighted the importance of fully characterising tissue analogues – with particular emphasis on the requirement to understand the behaviour of such analogues under impact as part of a system as well as individually.Item Open Access On the effects of powder morphology on the post-comminution ballistic strength of ceramics(Elsevier, 2016-10-29) Appleby-Thomas, Gareth J.; Wood, D. C.; Hameed, Amer; Painter, Jonathan; Fitzmaurice, Brianna C.In this paper in order to try and elucidate the effects of particle morphology on ballistic response of comminuted systems, a series of experiments were carried out via the use of powder compacts with differing initial particle morphologies. This approach provided a route to readily manufacture comminuted armour analogues with significantly different microstructural compositions. In this study pre-formed `fragmented-ceramic' analogues were cold-pressed using plasma-spray alumina powders with two differing initial morphologies (angular and spherical). These compacts were then impacted using 7.62-mm FFV AP (Förenade Fabriksverken Armour Piercing) rounds with the subsequent depth-of-penetration of the impacting projectile into backing Al 6082 blocks used to provide a measure of pressed ceramic ballistic response. When material areal density was accounted for via differing ballistic efficiency calculations a strong indication of particle morphology influence on post-impact ceramic properties was apparent. These results were reinforced by a separate small series of plate-impact experiments, whose results indicated that powder morphology had a strong influence on the nature of compact collapse.