CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fidalgo de Almeida, Pedro M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A chromosome-level genome assembly of Solanum chilense, a tomato wild relative associated with resistance to salinity and drought
    (Frontiers, 2024-03-08) Molitor, Corentin; Kurowski, Tomasz J.; Fidalgo de Almeida, Pedro M.; Kevei, Zoltan; Spindlow, Daniel J.; Chacko Kaitholil, Steffimol R.; Iheanyichi, Justice U.; Prasanna, H. C.; Thompson, Andrew J.; Mohareb, Fady R.
    Introduction: Solanum chilense is a wild relative of tomato reported to exhibit resistance to biotic and abiotic stresses. There is potential to improve tomato cultivars via breeding with wild relatives, a process greatly accelerated by suitable genomic and genetic resources. Methods: In this study we generated a high-quality, chromosome-level, de novo assembly for the S. chilense accession LA1972 using a hybrid assembly strategy with ~180 Gbp of Illumina short reads and ~50 Gbp long PacBio reads. Further scaffolding was performed using Bionano optical maps and 10x Chromium reads. Results: The resulting sequences were arranged into 12 pseudomolecules using Hi-C sequencing. This resulted in a 901 Mbp assembly, with a completeness of 95%, as determined by Benchmarking with Universal Single-Copy Orthologs (BUSCO). Sequencing of RNA from multiple tissues resulting in ~219 Gbp of reads was used to annotate the genome assembly with an RNA-Seq guided gene prediction, and for a de novo transcriptome assembly. This chromosome-level, high-quality reference genome for S. chilense accession LA1972 will support future breeding efforts for more sustainable tomato production. Discussion: Gene sequences related to drought and salt resistance were compared between S. chilense and S. lycopersicum to identify amino acid variations with high potential for functional impact. These variants were subsequently analysed in 84 resequenced tomato lines across 12 different related species to explore the variant distributions. We identified a set of 7 putative impactful amino acid variants some of which may also impact on fruit development for example the ethylene-responsive transcription factor WIN1 and ethylene-insensitive protein 2. These variants could be tested for their ability to confer functional phenotypes to cultivars that have lost these variants.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    De novo genome assembly of Solanum sitiens reveals structural variation associated with drought and salinity tolerance
    (Oxford University Press, 2021-01-30) Molitor, Corentin; Kurowski, Tomasz J.; Fidalgo de Almeida, Pedro M.
    Motivation: Solanum sitiens is a self-incompatible wild relative of tomato, characterised by salt and drought resistance traits, with the potential to contribute through breeding programmes to crop improvement in cultivated tomato. This species has a distinct morphology, classification and ecotype compared to other stress resistant wild tomato relatives such as S. pennellii and S. chilense. Therefore, the availability of a reference genome for S. sitiens will facilitate the genetic and molecular understanding of salt and drought resistance. Results: A high-quality de novo genome and transcriptome assembly for S. sitiens (Accession LA1974) has been developed. A hybrid assembly strategy was followed using Illumina short reads (~159X coverage) and PacBio long reads (~44X coverage), generating a total of ~262 Gbp of DNA sequence. A reference genome of 1,245 Mbp, arranged in 1,483 scaffolds with a N50 of 1.826 Mbp was generated. Genome completeness was estimated at 95% using the Benchmarking Universal Single-Copy Orthologs (BUSCO) and the K-mer Analysis Tool (KAT). In addition, ~63 Gbp of RNA-Seq were generated to support the prediction of 31,164 genes from the assembly, and to perform a de novo transcriptome. Lastly, we identified three large inversions compared to S. lycopersicum, containing several drought resistance related genes, such as beta-amylase 1 and YUCCA7. Availability: S. sitiens (LA1974) raw sequencing, transcriptome and genome assembly have been deposited at the NCBI’s Sequence Read Archive, under the BioProject number “PRJNA633104”.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback