Browsing by Author "Fidalgo Fernandez, Beatriz"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Open Access Characterisation of excavated plastics for thermochemical upcycling to platform chemicals and liquid fuels(2018-2-28) Canopoli, Luisa; Fidalgo Fernandez, Beatriz; Wagland, Stuart T.In Europe there are ~500,000 landfills; plastics represent a consistent and significant proportion of waste in landfill (typically 5-25% w/w). This fraction remains in the landfill, along with other non-biodegradable materials, long after the readily biodegradable organics have degraded. During storage in landfill the plastics physicochemical structure is likely to change because of the occurrence of chemical and biochemical reactions, which can lead to their degradation. For instance, H2S and organic acids produced during the acetogenesis phase of landfill are known to degrade plastics, therefore it can be hypothesised that plastics excavated from landfill are not suitable for conventional recycling. The fate of plastics in landfill has not been largely investigated and limited data exists addressing the changes in chemical and physical properties. The aim of this work is to investigate the degradation of plastics in landfill by characterising chemical and physical properties of samples excavated from different landfill depths. Waste samples were extracted from landfills across the UK at depths of 5-40 m. These were sorted in order to determine the total plastic content and the percentage of each type of plastic present (i.e. PET, HDPE etc). The types of plastics were identified using near infrared [NIR] spectroscopy. The surface properties of the excavated plastics were characterised using SEM/EDS to analyse and evaluate their degradation and contamination levels. Chemical characterisation of each plastic fraction has been carried out by proximate and ultimate analyses. Finally, the surface contamination (metal content) of the plastics was determined by ICP. Fresh, non-landfilled, plastic samples matching the plastic types of those found in landfill were characterised for comparison. The data highlighted plastic type variation across the samples, largely dependent on the age of the excavated material. The extent of degradation, was found to depend on the type of plastic and depth of the sample. This work contributes to address the potential utilisation of excavated plastics, such as for upcycling to platform chemicals and/or liquid fuels through thermochemical conversion.Item Open Access Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading(Elsevier, 2016-05-13) Shemfe, Mobolaji B.; Whittaker, Carly; Gu, Sai; Fidalgo Fernandez, BeatrizThis study examines the GHG emissions associated with producing bio-hydrocarbons via fast pyrolysis of Miscanthus. The feedstock is then upgraded to bio-oil products via hydroprocessing and zeolite cracking. Inventory data for this study were obtained from current commercial cultivation practices of Miscanthus in the UK and state-of-the-art process models developed in Aspen Plus®. The system boundary considered spans from the cultivation of Miscanthus to conversion of the pyrolysis-derived bio-oil into bio-hydrocarbons up to the refinery gate. The Miscanthus cultivation subsystem considers three scenarios for soil organic carbon (SOC) sequestration rates. These were assumed as follows: (i) excluding (SOC), (ii) low SOC and (iii) high (SOC) for best and worst cases. Overall, Miscanthus cultivation contributed moderate to negative values to GHG emissions, from analysis of excluding SOC to high SOC scenarios. Furthermore, the rate of SOC in the Miscanthus cultivation subsystem has significant effects on total GHG emissions. Where SOC is excluded, the fast pyrolysis subsystem shows the highest positive contribution to GHG emissions, while the credit for exported electricity was the main ‘negative’ GHG emission contributor for both upgrading pathways. Comparison between the bio-hydrocarbons produced from the two upgrading routes and fossil fuels indicates GHG emission savings between 68% and 87%. Sensitivity analysis reveals that bio-hydrocarbon yield and nitrogen gas feed to the fast pyrolysis reactor are the main parameters that influence the total GHG emissions for both pathways.Item Open Access Conceptual energy and water recovery system for self-sustained nano membrane toilet(Energy Conservation and Management, 2016-08-12) Hanak, Dawid P.; Kolios, Athanasios; Onabanjo, Tosin; Wagland, Stuart Thomas; Patchigolla, Kumar; Fidalgo Fernandez, Beatriz; Manovic, Vasilije; McAdam, Ewan J.; Parker, Alison; Williams, Leon; Tyrrell, Sean; Cartmell, EliseWith about 2.4 billion people worldwide without access to improved sanitation facilities, there is a strong incentive for development of novel sanitation systems to improve the quality of life and reduce mortality. The Nano Membrane Toilet is expected to provide a unique household-scale system that would produce electricity and recover water from human excrement and urine. This study was undertaken to evaluate the performance of the conceptual energy and water recovery system for the Nano Membrane Toilet designed for a household of ten people and to assess its self-sustainability. A process model of the entire system, including the thermochemical conversion island, a Stirling engine and a water recovery system was developed in Aspen Plus®. The energy and water recovery system for the Nano Membrane Toilet was characterised with the specific net power output of 23.1 Wh/kgsettledsolids and water recovery rate of 13.4 dm3/day in the nominal operating mode. Additionally, if no supernatant was processed, the specific net power output was increased to 69.2 Wh/kgsettledsolids. Such household-scale system would deliver the net power output (1.9–5.8 W). This was found to be enough to charge mobile phones or power clock radios, or provide light for the household using low-voltage LED bulbs.Item Open Access Energy recovery from human faeces via gasification: A thermodynamic equilibrium modelling approach(Elsevier, 2016-04-01) Onabanjo, Tosin; Patchigolla, Kumar; Wagland, Stuart Thomas; Fidalgo Fernandez, Beatriz; Kolios, Athanasios; McAdam, Ewan J.; Parker, Alison; Williams, Leon; Tyrrel, Sean; Cartmell, EliseNon-sewered sanitary systems (NSS) are emerging as one of the solutions to poor sanitation because of the limitations of the conventional flush toilet. These new sanitary systems are expected to safely treat faecal waste and operate without external connections to a sewer, water supply or energy source. The Nano Membrane Toilet (NMT) is a unique domestic-scale sanitary solution currently being developed to treat human waste on-site. This toilet will employ a small-scale gasifier to convert human faeces into products of high energy value. This study investigated the suitability of human faeces as a feedstock for gasification. It quantified the recoverable exergy potential from human faeces and explored the optimal routes for thermal conversion, using a thermodynamic equilibrium model. Fresh human faeces were found to have approximately 70–82 wt.% moisture and 3–6 wt.% ash. Product gas resulting from a typical dry human faeces (0 wt.% moisture) had LHV and exergy values of 17.2 MJ/kg and 24 MJ/kg respectively at optimum equivalence ratio of 0.31, values that are comparable to wood biomass. For suitable conversion of moist faecal samples, near combustion operating conditions are required, if an external energy source is not supplied. This is however at 5% loss in the exergy value of the gas, provided both thermal heat and energy of the gas are recovered. This study shows that the maximum recoverable exergy potential from an average adult moist human faeces can be up to 15 MJ/kg, when the gasifier is operated at optimum equivalence ratio of 0.57, excluding heat losses, distribution or other losses that result from operational activities.Item Open Access An experimental investigation of the combustion performance of human faeces(Elsevier, 2016-07-27) Onabanjo, Tosin; Kolios, Athanasios; Patchigolla, Kumar; Wagland, Stuart Thomas; Fidalgo Fernandez, Beatriz; Jurado Pontes, Nelia; Hanak, Dawid P.; Manovic, Vasilije; Parker, Alison; McAdam, Ewan J.; Williams, Leon; Tyrrel, Sean F.; Cartmell, ElisePoor sanitation is one of the major hindrances to the global sustainable development goals. The Reinvent the Toilet Challenge of the Bill and Melinda Gates Foundation is set to develop affordable, next-generation sanitary systems that can ensure safe treatment and wide accessibility without compromise on sustainable use of natural resources and the environment. Energy recovery from human excreta is likely to be a cornerstone of future sustainable sanitary systems. Faeces combustion was investigated using a bench-scale downdraft combustor test rig, alongside with wood biomass and simulant faeces. Parameters such as air flow rate, fuel pellet size, bed height, and fuel ignition mode were varied to establish the combustion operating range of the test rig and the optimum conditions for converting the faecal biomass to energy. The experimental results show that the dry human faeces had a higher energy content (∼25 MJ/kg) than wood biomass. At equivalence ratio between 0.86 and 1.12, the combustion temperature and fuel burn rate ranged from 431 to 558 °C and 1.53 to 2.30 g/min respectively. Preliminary results for the simulant faeces show that a minimum combustion bed temperature of 600 ± 10 °C can handle faeces up to 60 wt.% moisture at optimum air-to-fuel ratio. Further investigation is required to establish the appropriate trade-off limits for drying and energy recovery, considering different stool types, moisture content and drying characteristics. This is important for the design and further development of a self-sustained energy conversion and recovery systems for the NMT and similar sanitary solutions.Item Open Access Heat integration for bio-oil hydroprocessing coupled with aqueous phase steam reforming(Elsevier, 2015-09-16) Shemfe, Mobolaji B.; Fidalgo Fernandez, BeatrizOptimized heat exchanger networks can improve process profitability and minimize emissions. The aim of this study is to assess the heat integration opportunities for a hypothetical bio-oil hydroprocessing plant integrated with a steam reforming process via pinch technology. The bio-oil hydroprocessing plant was developed with rate based chemical reactions using ASPEN Plus® process simulator. The base case is a 1600 kg/h bio-oil hydroprocessing plant, which is integrated with a steam reforming process of the bio-oil aqueous phase. The impact of the reformer steam to carbon ratio on energy targets was analysed, revealing that significant energy savings can be achieved at different process variations. Aspen Energy Analyzer™ was employed to design the heat exchanger network. Two heat exchanger network designs are considered. The optimum design reveals that the second hydrodeoxygenation reactor effluent can preheat the bio-oil feed with minimal capital cost implication and achieve similar energy targets compared with the alternative design. The economic and environmental implications of the two heat exchanger network designs on product value were also evaluated.Item Open Access Mechanism of transmethylation in anisole decomposition over HZSM-5: Experimental study(Elsevier, 2016-09-15) Zhang, Jiajun; Fidalgo Fernandez, Beatriz; Shen, Dekui; Xiao, Rui; Gu, SaiThis work investigated the decomposition of anisole (methoxyl-based lignin model compound) in a fluidized bed reactor over no catalysts and a series of HZSM-5 zeolite catalysts with different Si/Al atomic ratios. Transmethylation reaction was identified as the initial step of the thermal decomposition of anisole, leading to the prominent production of phenolic compounds. Methyl phenols were identified as the main products, with the yield of o-cresol being higher than that of p-cresol at the temperatures below 600° C. The transmethylation reaction over HZSM-5 zeolite catalyst was found to occur at temperatures 150° C lower than those for non-catalytic reaction, with the yield of the phenolic compounds being promoted by 2.5 times. Production of the main phenolic compounds during the catalytic decomposition of anisole was enhanced to different extents depending on the Si/Al ratio. The highest selectivity of 79 wt.% was achieved over the zeolite catalyst with a Si/Al ratio of 80. The Brønsted acid sites of the catalyst played a significant role in both the preferential formation of phenolic compounds and preservation of the methyl group.Item Open Access Numerical analysis of microwave assisted thermocatalytic decomposition of methane(Elsevier, 2016-11-23) Gadkari, Siddharth; Fidalgo Fernandez, Beatriz; Gu, SaiA comprehensive 3D coupled mathematical model is developed to study the microwave assisted thermocatalytic decomposition of methane with activated carbon as the catalyst. A simple reaction kinetic model for methane conversion (accounting for catalyst deactivation) is developed from previously published experimental data and coupled with the governing equations for the microwaves, heat transfer, mass transfer and fluid flow physics. Temperature distribution and concentration profiles of CH4 & H2 in the catalyst bed are presented. The temperature profiles at different input power values predict a non-uniform temperature distribution with hot-spots near the top and bottom of the catalyst. The concentration profiles predict a linear variation of CH4 and H2 concentration along the length of the reactor and show a good agreement with experimental conversion values. The influence of volumetric hourly space velocity on methane conversion is also investigated.Item Open Access Numerical investigation of microwave-assisted pyrolysis of lignin(Elsevier, 2016-10-16) Gadkari, Siddharth; Fidalgo Fernandez, Beatriz; Gu, SaiA comprehensive three-dimensional mathematical model is developed for studying the microwave-assisted pyrolysis of biomass. Kraft Lignin is considered as biomass feedstock in the model, and a mixture of lignin and char, is used as the sample for pyrolysis. A lumped kinetic model which considers three lumped pyrolysis products (gas, liquid and remaining solid fractions) is coupled with the governing equations for the microwave field, heat transfer, mass transfer, Darcy fluid flow and a transient numerical analysis is performed. The distribution of electric field in the microwave cavity, and the distribution of electric field, temperature, and pyrolysis products within the lignin sample are presented. The lignin sample is predicted to undergo volumetric heating when subjected to microwave heating. Accordingly the reaction zone extends from the center of the biomass sample bed towards the outer surface. Preliminary evaluation of the applicability of the model for assessing the effect of different parameters on the microwave pyrolysis of lignin is also carried out.Item Open Access Techno-economic analysis of biofuel production via bio-oil zeolite upgrading: an evaluation of two catalyst regeneration systems(Elsevier, 2017-01-25) Shemfe, Mobolaji B.; Gu, Sai; Fidalgo Fernandez, BeatrizBiofuels have been identified as a mid-term greenhouse gas (GHG) emissions abatement solution for decarbonising the transport sector. This study examines the techno-economic analysis of biofuel production via biomass fast pyrolysis and subsequent bio-oil upgrading via zeolite cracking. The aim of this study is to compare the techno-economic feasibility of two conceptual catalyst regeneration configurations for the zeolite cracking process: (i) a two-stage regenerator operating sequentially in partial and complete combustion modes (P-2RG) and (ii) a single stage regenerator operating in complete combustion mode coupled with a catalyst cooler (P-1RGC). The designs were implemented in Aspen Plus® based on a hypothetical 72 t/day pine wood fast pyrolysis and zeolite cracking plant and compared in terms of energy efficiency and profitability. The energy efficiencies of P-2RG and P-1RGC were estimated at 54% and 52%, respectively with corresponding minimum fuel selling prices (MFSPs) of £7.48/GGE and £7.20/GGE. Sensitivity analysis revealed that the MFSPs of both designs are mainly sensitive to variations in fuel yield, operating cost and income tax. Furthermore, uncertainty analysis indicated that the likely range of the MFSPs of P-1RGC (£5.81/GGE − £11.63/GGE) at 95% probability was more economically favourable compared with P-2RG, along with a penalty of 2% reduction in energy efficiency. The results provide evidence to support the economic viability of biofuel production via zeolite cracking of pyrolysis-derived bio-oil.