CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fentaye, Amare"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Performance-based fault diagnosis of a gas turbine engine using an integrated support vector machine and artificial neural network method
    (SAGE, 2018-11-18) Fentaye, Amare; Ul-Haq Gilani, Syed Ihtsham; Baheta, Aklilu Tesfamichael; Li, Yi-Guang
    An effective and reliable gas path diagnostic method that could be used to detect, isolate, and identify gas turbine degradations is crucial in a gas turbine condition-based maintenance. In this paper, we proposed a new combined technique of artificial neural network and support vector machine for a two-shaft industrial gas turbine engine gas path diagnostics. To this end, an autoassociative neural network is used as a preprocessor to minimize noise and generate necessary features, a nested support vector machine to classify gas path faults, and a multilayer perceptron to assess the magnitude of the faults. The necessary data to train and test the method are obtained from a performance model of the case engine under steady-state operating conditions. The test results indicate that the proposed method can diagnose both single- and multiple-component faults successfully and shows a clear advantage over some other methods in terms of multiple fault diagnosis. Moreover, 5-8 sets of measurements have been used to assess the prediction accuracy, and only a 2.3% difference was observed. This result indicates that the proposed method can be used for multiple fault diagnosis of gas turbines with limited measurements.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback