CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fengou, Lemonia-Christina"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Contribution of data acquired from spectroscopic, genomic and microbiological analyses to enhance mussels’ quality assessment
    (Elsevier, 2024-12-01) Lytou, Anastasia; Saxton, Léa; Fengou, Lemonia-Christina; Anagnostopoulos, Dimitrios A.; Parlapani, Foteini F.; Boziaris, Ioannis S.; Mohareb, Fady; Nychas, George-John
    In this study, a large amount of heterogeneous data (i.e., microbiological, spectral and Next Generation Sequencing data) were obtained analyzing mussels of different species and origin, to acquire a comprehensive view about the quality and safety of these products. More specifically, spectral data were collected through Fourier transform Infrared (FTIR) spectroscopy, while the overall profile of microorganisms present in these samples, affecting quality and safety of mussels throughout storage, was determined through Next Generation Sequencing (NGS) using 16S rRNA metabarcoding analysis. In parallel, conventional microbiological analysis for the estimation of culturable spoilage microorganisms (total aerobes, Pseudomonas spp., B. thermosphacta, Shewanella spp. and Enterobacteriaceae) was applied. Different machine learning algorithms, namely Partial Least Square (PLS), Support Vector Machines (SVM), k-Nearest Neighbors (kNN), Random Forest (RF) Neural Networks (NN)) were applied accordingly, to assess the potential of FTIR and NGS data to provide useful information about mussels’ microbiological quality. Microbial counts ranged from 3.5 to 9.0 log CFU/g, while NGS revealed several bacterial genera such as Pseudoalteromonas, Psychrobacter, Acinetobacter, Pseudomonas, B. thermosphacta, Psychrobacter, Kistimonas, Psychrilyobacter to affect the quality of mussels, depending on the mussel species, batch and storage conditions. According to the performance metrics, the SVM algorithm in tandem with FTIR achieved the highest prediction accuracy for microbial counts in M. chilensis samples (Rsquared; 0.89, RMSE; 0,74), while in the case of predicting the abundance of microbial genera using spectroscopic data, the best performing algorithm varied by bacterial genus. Indicatively, in M. chilensis, RF, kNN and NN performed better in predicting Enterococcus, Enhydrobacterium and Pseudoalteromonas, respectively (Rsquared = 0.92, 0.93, 0.99). Associations between genomics data and specific spectral regions were further investigated, revealing certain spectral regions that are associated with mussels’ quality and safety. The application of “multi-omics” in seafood supply chain can provide insightful information about mussels’ quality and safety compared to the methodologies followed in current quality and safety management systems.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Detection of meat adulteration using spectroscopy-based sensors
    (MDPI, 2021-04-15) Fengou, Lemonia-Christina; Lianou, Alexandra; Tsakanikas, Panagiοtis; Mohareb, Fady; Nychas, George-John E.
    Minced meat is a vulnerable to adulteration food commodity because species- and/or tissue-specific morphological characteristics cannot be easily identified. Hence, the economically motivated adulteration of minced meat is rather likely to be practiced. The objective of this work was to assess the potential of spectroscopy-based sensors in detecting fraudulent minced meat substitution, specifically of (i) beef with bovine offal and (ii) pork with chicken (and vice versa) both in fresh and frozen-thawed samples. For each case, meat pieces were minced and mixed so that different levels of adulteration with a 25% increment were achieved while two categories of pure meat also were considered. From each level of adulteration, six different samples were prepared. In total, 120 samples were subjected to visible (Vis) and fluorescence (Fluo) spectra and multispectral image (MSI) acquisition. Support Vector Machine classification models were developed and evaluated. The MSI-based models outperformed the ones based on the other sensors with accuracy scores varying from 87% to 100%. The Vis-based models followed in terms of accuracy with attained scores varying from 57% to 97% while the lowest performance was demonstrated by the Fluo-based models. Overall, spectroscopic data hold a considerable potential for the detection and quantification of minced meat adulteration, which, however, appears to be sensor-specific.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback