CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fajri, Kevin"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Advancements in sorption-enhanced steam reforming for clean hydrogen production: a comprehensive review
    (Elsevier, 2025-03-01) Farooqi, Ahmad Salam; Allam, Abdelwahab N.; Shahid, Muhammad Zubair; Aqil, Anas; Fajri, Kevin; Park, Sunhwa; Abdelaziz, Omar Y.; Abdelnaby, Mahmoud M.; Hossain, Mohammad Mozahar; Habib, Mohamed A.; Hasnain, Syed Muhammad Wajahat ul; Nabavi, Ali; Zhu, Mingming; Manovic, Vasilije; Nemitallah, Medhat A.
    The sorption-enhanced steam methane reforming (SE-SMR) process, which integrates methane steam reforming with in situ CO2 capture, represents a breakthrough technology for clean hydrogen production. This comprehensive review thoroughly explores the SE-SMR process, highlighting its ability to efficiently combine carbon capture with hydrogen generation. The review evaluates the mechanisms of SE-SMR and evaluates a range of innovative sorbent materials, such as CaO-based, alkali-ceramic, hydrotalcite, and waste-derived sorbents. The role of catalysts in enhancing hydrogen production within SE-SMR processes is also discussed, with a focus on bi-functional materials. In addition to examining reaction kinetics and advanced process configurations, this review touches on the techno-economic aspects of SE-SMR. While the analysis does not provide an in-depth economic evaluation, key factors such as potential capital costs (CAPEX), operational expenses (OPEX), and scalability are considered. The review outlines the potential of SE-SMR to offer more efficient hydrogen production, with the added benefit of in situ carbon capture simplifying the process design. Although a detailed economic comparison with other hydrogen production technologies was not the focus, this review emphasizes SE-SMR's promise as a scalable and flexible solution for clean energy. With its integrated design, SE-SMR offers pathways to industrial-scale hydrogen production. This review serves as a valuable resource for researchers, policymakers, and industry experts committed to advancing sustainable and efficient hydrogen production technologies.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback