CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Eiroa, David"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Degradation study of heat exchangers
    (Elsevier, 2015-10-27) Addepalli, Sri; Eiroa, David; Lieotrakool, Suphansa; Francois, Anne-Laure; Guisset, Juliette; Sanjaime, David; Kazarian, Michele; Duda, Julia; Roy, Rajkumar; Phillips, Paul
    Abstract This study mainly deals with the evaluation of various degradation mechanisms that heat exchangers are susceptible to with an aim of evaluating future design requirements. A heat exchanger is a heat management system that uses fluids to transfer heat from one medium to the other; the most common types of fluids being air, water, oil or specialised coolant mixtures. As part of this study a failure analysis of heat exchangers was carried out on selected heat exchangers used in both aerospace and automotive sectors. This study was then extended to designing test-rigs supporting two types of heat exchangers. For this study, an air-to-air and an oil-to-air heat exchanger test rigs were designed. Temperature, pressure and flow sensors were introduced in the test rig designs to monitor the flow characteristics in order to determine if degradations occurring as a result of operation have an impact on them. As part of the initial evaluation both visual inspection and pulsed thermography inspection were selected as suitable inspection methods to evaluate their in-service condition. Some heat exchanger units where then subjected to accelerated corrosion tests and their performance was monitored using scanning electron microscopy (SEM) measurements. The outcomes of the study presented in this paper confirm the suitability and adaptability of thermography in detecting degradations occurring in heat exchangers.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback