CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "De Natale, P."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Laser-frequency locking techniques for high-sensitivity strain measurements by high-birefringence fiber Bragg gratings and resonators
    (International Society for Optical Engineering; 1999, 2007-12-31T00:00:00Z) Salza, M.; Gagliardi, G.; Di Maio, A.; Ferraro, P.; De Natale, P.; Chehura, Edmon; Tatam, Ralph P.; Antonello, Cutolo; Brian, Culshaw; José, Miguel López-Higuera
    A new approach to simultaneously interrogate orthogonal axes of single Fiber- Bragg-Gratings (FBGs) and FBG-FabryPerot resonator sensors fabricated in linearly highly birefringent (HiBi) fibre is presented. Novel interrogation techniquesof single Fiber-Bragg-Gratings (FBGs) and FBG-resonator sensors are presented. For a single FBG, we combined alaser-modulation technique to an electronic feedback loop that keeps the source always frequency locked to one peak ofthe sensor's reflected spectrum. Two different lasers, with orthogonally- polarized states, were adopted to monitorsimultaneously both the "fast" and "slow" FBG peaks. The corresponding correction signals from the servo-loop outputscan be interpreted as strain or temperature induced on the FBG. Detection limits ranging from 1 nε/√Hz to 100 nε/√Hz,for axial dynamic and static deformations, respectively, and of 0.025 °C/√Hz for temperature variations, are expected. Asimilar approach was developed for sub-pϵ resolution interrogation of an optical resonator made of a high-reflectivityFBG-pair, using the Pound- Drever-Hall (PDH) stabilizati

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback