CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "De Caro, Fabrizio"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Investigation of wind turbine static yaw error based on utility-scale controlled experiments
    (IEEE, 2024-05-08) Astolfi, Davide; De Caro, Fabrizio; Pasetti, Marco; Gao, Linyue; Pandit, Ravi; Vaccaro, Alfredo; Hong, Jiarong
    Wind energy represents a promising alternative to replace traditional fossil-based energy sources. For this reason, increasing the efficiency in the conversion process from wind to electrical energy is crucial. Unfortunately, the presence of systematic errors (mostly related to the yaw and pitch angles) is one of the key factors causing underperformance, and for this reason, it requires adequate identification. The present work deals with diagnosing wind turbine static yaw error, occurring when the wind vane sensor is incorrectly aligned with the rotor shaft. A thorough investigation methodology is proposed by considering a unique experimental test-up shared by the Eolos Wind Research Station. A utility-scale wind turbine has been imposed to operate subjected to several static yaw errors and reference meteorological data collected nearby the wind turbine were available. By analyzing the relation between the meteorological data and the SCADA data collected by the wind turbine, a systematic alteration in the measurements of nacelle wind speed in the presence of the yaw error is explicitly shown. This phenomenon has been overlooked in the literature and leads to revisiting the methods mostly employed for the diagnosis of the error. Furthermore, a correlation between the presence of static error, increased blade pitch, and heightened levels of tower vibration is observed. In summary, this work provides a comprehensive characterization of the experimental evidence associated with the presence of a wind turbine static yaw error. This paves the way for more effective diagnostic techniques for wind turbine yaw errors, potentially revolutionizing data-driven maintenance strategies.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback