Browsing by Author "Davis, Alec E."
Now showing 1 - 16 of 16
Results Per Page
Sort Options
Item Open Access Comparison of microstructure refinement in wire-arc additively manufactured Ti–6Al–2Sn–4Zr–2Mo–0.1Si and Ti–6Al–4V built with inter-pass deformation(Springer, 2022-09-22) Davis, Alec E.; Caballero Ramos, Armando; Biswal, Romali; Williams, Stewart; Prangnell, P. B.The titanium alloy Ti–6Al–2Sn–4Zr–2Mo–0.1Si (Ti6242) has been deposited for the first time by a directed energy deposition process using a wire and arc system—i.e., wire-arc additive manufacturing (WAAM)—with and without inter-pass machine hammer peening, and its microstructure investigated and compared to the more commonly used alloy Ti–6Al–4V (Ti64). The application of inter-pass machine hammer peening—where each added layer was deformed before deposition—successfully refined the strongly textured, coarse, columnar β-grain structure that is commonly seen in α + β titanium alloys, producing a finer equiaxed grain structure with a near-random α texture. The average grain diameter and texture strength decreased with the peening pitch. When Ti6242 was deposited under identical conditions to Ti64, by switching the alloy feed wire in-situ, the refined β-grain size decreased across the alloy-to-alloy transition reaching on average 25 pct less in Ti6242 than in Ti64. A similar 25 pct scale reduction was also found in the Ti6242 α-lath transformation microstructure. This comparatively greater microstructure refinement in Ti6242 was attributed to the dissimilar alloying elements present in the two materials; specifically, molybdenum, which has a lower diffusivity than vanadium and led to slower β-grain growth during reheating as well as a finer transformation microstructure.Item Open Access Confirmation of rapid-heating β recrystallization in wire-arc additively manufactured Ti-6Al-4V(Elsevier, 2020-08-13) Davis, Alec E.; Caballero, Armando; Prangnell, Philip B.The coarse columnar β grains in Ti-6Al-4V WAAM can be refined by relatively low strain inter-pass deformation. Simulation, with rapid heating, has shown this may partly occur by a novel recrystallization mechanism that involves twinning during β regrowth through the α-β transus, as a result of the prior deformation promoting faults in the α-β interface, which produces a unique micro-texture in each parent β grain. Here, this potential mechanism has been investigated further, using a different deformation mode – uniaxial tensile deformation rather than plane strain compression – to enable the texture contribution from conventional recrystallization to be more unambiguously discriminated. The tensile-deformed samples are shown to produce the same unusual unique micro-texture seen previously, at low strains, despite the different deformation mode, but this disappeared at higher strains, which provides more evidence in support of this new rapid heating β recrystallization mechanismItem Open Access Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4V(Elsevier, 2021-04-03) Syed, Abdul Khadar; Zhang, Xiang; Davis, Alec E.; Kennedy, Jacob R.; Martina, Filomeno; Ding, Jialuo; Williams, Stewart; Prangnell, Philip B.The influence of three deposition strategies on the fatigue crack growth behaviour of Wire + Arc Additive Manufactured (WAAM) Ti–6Al–4V has been investigated in the as-built condition. Test samples were prepared using single pass, parallel pass, and oscillation deposition strategies and tested with cracks propagating parallel and normal to the plane of deposition. Due to the higher local heat input, the oscillation build exhibited a significantly coarser columnar β grain structure as well as a coarser transformation microstructure, compared to the single pass and parallel pass builds, which were very similar. Among the three build methods, the lowest crack growth rates were found with the oscillation build. The crack growth data was found to broadly fall between that of a recrystallized α (mill-annealed) and β annealed wrought material, with the oscillation strategy build behaving more similarly to a β annealed microstructure. The fatigue crack growth rate was lower when cracks were propagated perpendicular to the build layers. For each build strategy, a greater microstructural influence on crack growth rate was found at lower levels of stress intensity factor range (<25 MPa m1/2). However, the anisotropy and scatter in the data was much more significant in the case of the oscillation build. These differences have been attributed to the stronger α microtexture heterogeneity present in the oscillation build, which led to a greater crack deflection and bifurcation, giving rise to lower crack growth rates and a higher sensitivity to the anisotropy caused by the directional β grain structure.Item Open Access The effect of loading direction on strain localisation in wire arc additively manufactured Ti–6Al–4V(Elsevier, 2020-05-21) Lunt, David; Ho, Alistair; Davis, Alec E.; Harte, Allan; Martina, Filomeno; da Fonseca, João Quinta; Prangnell, PhilipTi–6Al–4V microstructures produced by high deposition rate Wire Arc Additive Manufacturing (WAAM) can be both heterogeneous and anisotropic. Key features of the as-built microstructures include; large columnar ß grains, an α transformation texture inherited from the β solidification texture, grain boundary (GB) α colonies, and Heat Affected Zone (HAZ) banding. The effect of this heterogeneity on the local strain distribution has been investigated using Digital Image Correlation (DIC) in samples loaded in tension; parallel (WD), perpendicular (ND) and at 45° (45ND) to the deposited layers. Full-field surface strain maps were correlated to the underlying local texture. It is shown that loading perpendicular to the columnar β grains leads to a diffuse heterogeneous deformation distribution, due to the presence of regions containing hard, and soft, α microtextures within different parent β grains. The ‘soft’ regions correlated to multi-variant α colonies that did not contain a hard α variant unfavourably orientated for basal or prismatic slip. Far more severe strain localisation was seen in 45° ND loading at ‘soft’ β grain boundaries, where single variant α GB colonies favourably orientated for slip had developed during transformation. In comparison, when loaded parallel to the columnar ß grains, the strain distribution was relatively homogeneous and the HAZ bands did not show any obvious influence on strain localisation at the deposit layer-scale. However, when using high-resolution DIC, as well as more intense shear bands being resolved at the β grain boundaries during 45° ND loading, microscale strain localisation was observed in HAZ bands below the yield point within the thin white-etching α colony layer.Item Open Access Effect of machine hammer peening conditions on β grain refinement of additively manufactured Ti-6Al-4V(MDPI, 2023-11-14) Neto, Leonor; Williams, Stewart; Davis, Alec E.; Kennedy, Jacob R.Ti-6Al-4V components built with wire plus arc additive manufacturing (WAAM) generally have long columnar β grains that cause anisotropic behavior when the material undergoes static and cyclic failure. Recently, machine hammer peening (MHP) has been proved to induce prior-β grain refinement in WAAM resulting in isotropic properties and increased strength. In this study, MHP was investigated for WAAM walls to establish the dependency of the β grain refinement on peening parameters, such as energy, tool radius, and distance between impact steps. All combinations of parameters investigated resulted in grain-refined microstructures. The plastic strain theory failed to explain these results, as the microstructure refinement achieved did not match the strain distribution obtained. Thus, a new theory of accumulated energy was proposed in which the dynamic deformation of the MHP process should also be taken into consideration. The mechanical properties for the MHP conditions showed higher strength and decreased anisotropy as the energy per length increased. This was attributed to the reduction in texture in the WAAM walls. Thus, when applying MHP, the energy per unit length is controlling the grain size obtained and improved mechanical properties can be achieved.Item Open Access The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturing(Elsevier, 2020-03-28) Davis, Alec E.; Kennedy, Jacob R.; Ding, Jialuo; Prangnell, Phil B.Relatively low levels of inter-pass deformation have been found to be very effective in refining the coarse columnar grain structures normally seen in Ti-6Al-4V components, built using wire-fed high-deposition-rate additive manufacturing processes. The most important process parameters that control the level of β recrystallization – the final grain size and micro-texture – were systematically investigated by simulating the deformation and high heating rate conditions in controlled samples, to develop the process knowledge required to optimise inter-pass deformation and obtain predictable grain sizes. Overall, it was found that the level of β-grain refinement achieved by inter-pass deformation was surprisingly insensitive to the ranges of deformation temperatures, deformation speeds, and changes to the as-deposited α + β microstructure, expected within the WAAM process window, provided a minimum plastic strain of only 14% was achieved in each added layer. Conversely, the final component grain size was shown to be strongly affected by rapid grain growth on re-heating above the β transus. The texture results obtained were consistent with previous work which suggested that, with fine AM transformation microstructures, new β-grain orientations may be produced during the α → β transformation from the development of twinning faults, induced by the prior deformation and rapid heating. In contrast, greatly increasing the starting α lamellar spacing – to be more similar to that found in a wrought material – greatly reduced the level of recrystallization and also appeared to change the recrystallization mechanism to favour new β orientations produced largely by local lattice rotation.Item Open Access The effectiveness of grain refinement by machine hammer peening in high deposition rate wire-arc AM Ti-6Al-4V(Springer, 2020-05-06) Hönnige, J. R.; Davis, Alec E.; Ho, A.; Kennedy, Jacob R.; Neto, L.; Prangnell, P.; Williams, StewartSurface deformation, applied in-process by machine hammer peening (MHP), has the potential to refine the coarse columnar β-grain structures normally found in high deposition rate Wire-Arc Additive Manufacturing (WAAM) processes with Ti alloys like Ti-6Al-4V. Effective refinement, as well as a reduction in texture strength, has been achieved in relatively thick sections and to a depth that is greater than that expected from the surface deformation induced by MHP. By application of MHP to each deposition track, the average β-grain size could be reduced from cm’s to less than 0.5 mm. Systematic experiments have been performed to investigate the origin of this interesting effect, which included ‘stop-action’ trials and separation of the strain and temperature gradients induced by the two process steps. The maximum depth of the plastic deformation from MHP required to generate new β-grain orientations was determined by electron backscatter diffraction local average misorientation analysis to be < 0.5 mm, which was less than the melt pool depth in the WAAM process. Nevertheless, new β-grain orientations were observed to form within the peened layer ahead of the approaching heat source as the peak temperature rose above the β transus, which then grew into the less deformed core of the wall as the temperature rose. This allowed the new grain orientations to penetrate deeper than the melt pool depth and survive to act as substrates for epitaxial growth at the fusion boundary during solidification, resulting in significant grain refinementItem Open Access Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture(Elsevier, 2019-08-14) Davis, Alec E.; Breheny, Cameron; Fellowes, Jonathan W.; Nwankpa, U.; Martina, Filomeno; Ding, Jialuo; Prangnell, PhilA first stage study has been performed to investigate the potential for exploiting high deposition rate WAAM to print dual-alloy microstructures. Samples were built using alternating feed wires of commercially-pure Ti and Ti–6Al–4V. A high level of dilution occurred during deposition accompanied by effective liquid-phase mixing, producing a regular distribution of solidified melt tracks of approximate bimodal composition each less extreme than that of their respective constituent feed wires. The yield strength of the dual alloy composite material was approximately midway between that of the two alloys from which it was produced and exhibited a double inflection yield behaviour. Overall, because of the relatively coarse length scale there was not a significant property advantage in tensile loading above that of a chemically homogenous material, thus the main advantage of printing alternate alloys at this length scale is likely to reside more with increasing crack path tortuosity during fracture or fatigue loading. Importantly, the deposited material was found to have a refined β-grain structure suggesting that the composition gradients introduced by dual-alloy printing can disrupt the epitaxial columnar growth normally seen in WAAM deposits.Item Open Access Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacture(Elsevier, 2019-08-14) Davis, Alec E.; Breheny, Cameron I.; Fellowes, Jonathan W.; Nwankpa, U.; Martina, Filomeno; Ding, Jialuo; Machry, Thays; Prangnell, PhilA first stage study has been performed to investigate the potential for exploiting high deposition rate WAAM to print dual-alloy microstructures. Samples were built using alternating feed wires of commercially-pure Ti and Ti–6Al–4V. A high level of dilution occurred during deposition accompanied by effective liquid-phase mixing, producing a regular distribution of solidified melt tracks of approximate bimodal composition each less extreme than that of their respective constituent feed wires. The yield strength of the dual alloy composite material was approximately midway between that of the two alloys from which it was produced and exhibited a double inflection yield behaviour. Overall, because of the relatively coarse length scale there was not a significant property advantage in tensile loading above that of a chemically homogenous material, thus the main advantage of printing alternate alloys at this length scale is likely to reside more with increasing crack path tortuosity during fracture or fatigue loading. Importantly, the deposited material was found to have a refined β-grain structure suggesting that the composition gradients introduced by dual-alloy printing can disrupt the epitaxial columnar growth normally seen in WAAM deposits.Item Open Access Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacture(Taylor and Francis, 2022-08-18) Caballero, Armando; Davis, Alec E.; Kennedy, Jacob R.; Fellowes, Jonathan; Garner, Alistair; Williams, Stewart; Prangnell, PhilipThe as-deposited microstructure and mechanical properties of the near-β titanium alloy Ti-5Al-5V-5Mo-3Cr (Ti-5553) produced by wire-arc additive manufacture (WAAM) were investigated, to understand its microstructural evolution under WAAM deposition conditions and to establish correlations between the microstructure features formed and the thermal cycles experienced during deposition. The ‘as-deposited’ Ti-5553 WAAM material exhibited higher tensile strengths than other as-deposited additively manufactured Ti-5553 deposits previously reported in the literature, but had significant anisotropy in elongation, as a consequence of the coarse and columnar β-grain structure that formed on solidification, which exhibited a strong {001}β⟨001⟩β cube texture. The multiple reheating cycles, inherent to the WAAM process, were recorded using a novel ‘harpoon’ thermocouple technique, and the α precipitation evolution was related to the thermal history. Electron probe microanalysis chemical maps revealed significant solute microsegregation during solidification, which influenced the subsequent precipitation due to its effect on the local β-phase stability. As each layer experienced more reheating cycles, the microstructure evolution could be ‘time resolved’ and the α laths were found to precipitate in a specific sequence of nucleation sites, starting at the β-grain boundaries and then inter-dendritically, where there was lower matrix β stability. However, after the reheating peak temperature was insufficiently high to have any further effect, the microstructure consisted of a relatively uniform distribution of α laths.Item Open Access Microstructure transition gradients in titanium dissimilar alloy (Ti-5Al-5V-5Mo-3Cr/Ti-6Al-4V) tailored wire-arc additively manufactured components(Elsevier, 2021-11-03) Kennedy, Jacob R.; Davis, Alec E.; Caballero Ramos, Armando; White, M.; Fellowes, Jonathan W.; Pickering, E. J.; Prangnell, P. B.The nature of the chemical mixing and microstructure gradients that occur across the interface transition, when manufacturing tailored components with the two high-performance dissimilar titanium alloys (Ti-6Al-4V (Ti-64) and Ti-5Al-5V-5Mo-3Cr (Ti-5553)) by the wire-arc additive manufacturing (WAAM) process, are reported. It has been shown that a relatively long-range chemical gradient occurs during the transition between layers produced with the two different titanium alloys, due to convective mixing in the melt pool between the substrate layers and new alloy wire. This resulted in a stepwise exponential decay composition profile normal to the layers, the width of which can be described by a simple dilution law, with steep local composition gradients seen within the boundary layers at the fusion boundary of each individual layer. The alloy-alloy composition gradients had little effect on the β-grain structure. However, they strongly influenced the transformation microstructure, due to their effect on the parent β-phase stability and the β → α transformation kinetics and reaction sequence. The microstructure gradient seen on transitioning from Ti-64 → Ti-5553 was significantly more abrupt, compared to when depositing the two alloys in the reverse order. Under WAAM thermal conditions, Ti-64 appears to be more sensitive to the effect of adding β-stabilising elements than when Ti-5553 is diluted by Ti-64, because at high cooling rates, stabilisation of the β phase readily suppresses α nucleation when cooling through the β transus, and the normal Ti-64 lamellar transformation microstructure is abruptly replaced by finer scale α laths generated by precipitation during subsequent reheating cycles.Item Open Access On the observation of annealing twins during simulating β-grain refinement in Ti–6Al–4V high deposition rate AM with in-process deformation(Elsevier, 2020-01-08) Donoghue, Jack; Davis, Alec E.; Daniel, Christopher S.; Garner, Alistair; Martina, Filomeno; da Fonseca, João Quinta; Prangnell, Phil B.Additive Manufacture (AM) of Ti–6Al–4V frequently leads to undesirable, coarse, columnar β-grain structures with a strong <100> fibre texture. In Wire-Arc AM (WAAM), it has been found that the application of a low plastic strain, by methods such as inter-pass rolling, can disrupt β columnar growth and produce a refined, equiaxed grain structure that is more randomly orientated. The origin of this desirable effect has been investigated by thermo-mechanical simulation, direct in-situ EBSD observation, as well as by real-time synchrotron X-ray diffraction (SXRD) during rapid heating. These complementary approaches have shown that, when starting with a WAAM microstructure, the grain refinement process produces a unique micro-texture represented by a four-pole motif symmetrically centred on the parent grain {100} orientations. These new β-grain orientations can be reproduced by a double {112}<111> twinning operation, which produces 12 new, unique, β-orientation variants. High-resolution orientation-mapping techniques and in-situ SXRD heating simulations suggest that the prior β does not twin during deformation, but rather the grain refinement and related texture may be caused by annealing twinning during β re-growth on rapid re-heating of the deformed AM microstructure. Although this is the first time such a unique texture has been observed in a deformed and β annealed Ti–6Al–4V material, it was only found to dominate under the unusual conditions that occur in AM of rapid heating – a fine, lightly deformed α transformation microstructure, with a very coarse starting β-grain structureItem Open Access On the origin of microstructural banding in Ti-6Al4V wire-arc based high deposition rate additive manufacturing(Elsevier, 2019-01-04) Ho, Alistair; Zhao, Hao; Fellowes, Jonathan W.; Martina, Filomeno; Davis, Alec E.; Prangnell, Philip B.Directed energy high deposition-rate additive manufacturing processes involve a larger melt pool diameter (∼5–10 mm) and layer height (1–2 mm) than powder bed technologies, which generally leads to greater microstructural heterogeneity and more severe Heat Affected Zone (HAZ) banding. While HAZ banding has been widely reported in AM, in this study the banding features seen in samples produced by Wire-Arc Additive Manufacturing (WAAM) have been more rigorously quantified than previously possible, using statistically reliable compositional and, purpose developed, microstructure analysis mapping tools, which has provided new insight into their nature and mechanisms of formation. In addition to HAZ banding, a segregation layer has also been discovered at the fusion boundary from each melt track. This transient segregation layer and the weak coring seen, for the first time in the AM deposits, can be attributed to the lower partition coefficient of Fe in titanium, as well as limited V and Al segregation. The detailed microstructure evolution occurring in the HAZ bands has been revisited, based on new evidence, and is shown to involve both dark and white etching bands. The lower temperature dark etching region is caused not just by an increase in the α lamellar spacing due to coarsening, but also by greater chemical partitioning with temperature rise. In addition, it is shown by thermal simulation that the thin white band occurs on re-heating to just below the β transus temperature, which is shifted upwards owing to the high heating rate in AM. This white band is associated with a morphological change to a fine α lamellar colony morphology, which exhibits less solute partitioning. The mechanisms involved are discussed. The rapid coarsening that occurs in the range of the β approach curve is attributed to interface migration from β re-growth, rather than conventional surface tension driven effects, whereas the fine colony microstructure is proposed to be caused by colony nucleation, in subsequent cooling, on a low volume fraction of residual α.Item Open Access The potential for grain refinement of wire-arc additive manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculation(Elsevier, 2021-02-23) Kennedy, Jacob R.; Davis, Alec E.; Caballero Ramos, Armando; Williams, Stewart; Pickering, E. J.; Prangnell, P. B.Wire-Arc Additive Manufacturing (WAAM) of large near-net-shape titanium components has the potential to reduce costs and lead-time in many industrial sectors including aerospace. However, with titanium alloys, such as Ti-6Al-4V, standard WAAM processing conditions result in solidification microstructures comprising large cm-scale, <001> fibre textured, columnar β grains, which are detrimental to mechanical performance. In order to reduce the size of the solidified β-grains, as well as refine their columnar morphology and randomise their texture, two cubic nitride phases, TiN and ZrN were investigated as potential grain refining inoculants. To avoid the cost of manufacturing new wire, experimental trials were performed using powder adhered to the surface of the deposited tracks. With TiN particle additions, the β grain size was successfully reduced and modified from columnar to equiaxed grains, with an average size of 300 µm, while ZrN powder was shown to be ineffective at low addition levels studied. Clusters of TiN particles were found to be responsible for nucleating multiple β Ti grains. By utilizing the Burgers orientation relationship, EBSD investigation showed that a Kurdjumov-Sachs orientation relationship could be demonstrated between the refined primary β grains and TiN particles.Item Open Access Quantification of strain fields and grain refinement in Ti-6Al-4V inter-pass rolled wire-arc AM by EBSD misorientation analysis(Elsevier, 2020-09-25) Davis, Alec E.; Hönnige, J. R.; Martina, Filomeno; Prangnell, P. B.Inter-pass deformation is an effective method for refining the coarse β-grain structure normally produced in high-deposition-rate additive manufacturing processes, like wire-arc additive manufacturing. The effectiveness of applying contoured surface rolling deformation tracks to each added layer has been studied by developing, and applying, a large-area SEM-based strain mapping technique. This technique is based on calibration of the average point-to-point Local Average Misorientation (LAM) of α-phase lamellar variants in EBSD orientation data to the local effective plastic strain. Although limited in the strain range that can be measured, the technique has proven to be very effective for identifying the size and depth of the plastic zone induced by surface rolling, as well as the local strain distribution, up to a saturation limit of ~12%. The strain fields mapped showed a close correlation to the region and level of recrystallization that occurred in the deformation zones during rapid re-heating through the β transus. The β recrystallization identified was consistent with the local strain distribution within the plastic zones measured by the LAM method and previous work on the recrystallization mechanisms operating in WAAM inter-pass deformation processes.Item Open Access β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturing(Elsevier, 2021-11-14) Kennedy, Jacob R.; Davis, Alec E.; Caballero, Armando E.; Byres, N.; Williams, Stewart; Pickering, E. J.; Prangnell, P. B.Wire-Arc Additive Manufacturing (WAAM) of large near-net-shape titanium parts has the potential to reduce costs in aerospace applications. However, with titanium alloys, such as Ti-6Al-4V, conventional WAAM processing conditions generally result in epitaxial solidification from the melt pool fusion boundary, which over many layers can generate coarse cm-scale,<001>//ND fibre textured, columnar β grain structures within the deposited metal. The mechanical anisotropy caused by this coarse primary grain structure cannot be eliminated by subsequent solid-state phase transformations. In order to attempt to refine the size of the solidified β-grains and reduce their strong texture, the growth restriction efficiency of low addition levels of the strongly partitioning element (k = 0.1) yttrium (Y) has been investigated. Less than 0.8 wt.% Y was sufficient to reduce the widths of the solidified columnar β grains from 1 to 2 mm to 100–300 µm. Y was also found to induce a columnar-to-equiaxed transition (CET) in the latter stages of melt pool solidification, which benefits from a lower liquid thermal gradient and higher solidification velocity. Inter-dendritic segregation of Y was also found to be significant and oxygen scavenging led to the formation of Y2O3 particles in the inter-dendritic liquid, with a previously unreported irregular eutectic morphology. High-resolution EBSD analysis showed these particles exhibited specific orientation relationships with the solidified β grains, which were confirmed experimentally.