CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Crawley, Fergus"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Harnessing energy for wearables: a review of radio frequency energy harvesting technologies
    (MDPI, 2023-07-31) Nwalike, Ezekiel Darlington; Ibrahim, Khalifa Aliyu; Crawley, Fergus; Qin, Qing; Luk, Patrick; Luo, Zhenhua
    Wireless energy harvesting enables the conversion of ambient energy into electrical power for small wireless electronic devices. This technology offers numerous advantages, including availability, ease of implementation, wireless functionality, and cost-effectiveness. Radio frequency energy harvesting (RFEH) is a specific type of wireless energy harvesting that enables wireless power transfer by utilizing RF signals. RFEH holds immense potential for extending the lifespan of wireless sensors and wearable electronics that require low-power operation. However, despite significant advancements in RFEH technology for self-sustainable wearable devices, numerous challenges persist. This literature review focuses on three key areas: materials, antenna design, and power management, to delve into the research challenges of RFEH comprehensively. By providing an up-to-date review of research findings on RFEH, this review aims to shed light on the critical challenges, potential opportunities, and existing limitations. Moreover, it emphasizes the importance of further research and development in RFEH to advance its state-of-the-art and offer a vision for future trends in this technology.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Piezoelectric energy harvester for harnessing rotational kinetic energy through linear energy conversion
    (MDPI, 2023-09-09) Abdulkhaliq, Habib Sadiq; Crawley, Fergus; Luk, Patrick; Luo, Zhenhua
    Real-time condition monitoring of various types of machinery using sensor technology has gained significant importance in recent years. However, relying on batteries to power these sensors proves to be sub-optimal, as it necessitates regular charging or replacement. To address this, harvesting waste energy from ambient sources emerges as a more efficient alternative. Everyday applications like vehicle wheels, fans, and turbines present ambient sources of waste rotational energy. In this study, we propose a novel rotational energy harvester design that converts rotational energy into linear energy. This linear energy impacts a piezoelectric disk, generating an electric potential. Through simulations, the expected electric potential at varying frequencies was evaluated. Subsequently, experimental tests were conducted by connecting the harvester to a rectifier for AC-to-DC signal conversion and an oscilloscope for voltage measurement. A DC motor replicated the rotational motion at the frequencies from the simulation, and the power output was measured. Using the power transfer theorem, simulation and experimental power outputs were calculated, resulting in values of 188, 513, and 1293 μW and 88.89, 336, and 923 μW, respectively. These results reveal that the designed harvester is competitive with those of existing rotational energy harvester designs, demonstrating the promising potential of this novel harvester.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback