CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Coroado, Julio"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Comparison of continuous and pulsed wave lasers in keyhole welding of stainless‑steel to aluminium
    (Springer, 2021-10-31) Coroado, Julio; Ganguly, Supriyo; Williams, Stewart; Suder, Wojciech; Meco, Sonia; Pardal, Goncalo
    A continuous wave (CW) and a nanosecond pulsed wave (PW) lasers were used to join 1-mm thick sheets of SS304L (SS) austenitic stainless-steel to AA5251 (Al) aluminium alloy in an overlap joint configuration. The weld shape (penetration depth and width), intermetallic compounds concentration, weld quality (cracking and porosity) and mechanical strength were correlated with the process energy and compared between each laser temporal mode. Successful CW joints were produced with the SS sheet on top of the Al, but the opposite configuration revealed to be impossible for the range of parameters tested. The PW joints were successful with the Al sheet on top of SS, but all the joints cracked at the interface when the opposite configuration was used. The mechanical tests showed that even though it is possible to achieve higher tensile shear load in CW welds due to the larger bonding area, the tensile shear strength revealed to be almost 5 × higher for PW welds at similar applied energy.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    New phenomenological model for comparison of lasers with different temporal outputs
    (Springer, 2022-04-06) Coroado, Julio; Williams, Stewart W.; Suder, Wojciech; Ganguly, Supriyo; Meco, Sonia; Pardal, Goncalo
    Laser welding is distinguished by low heat input, low distortion, high travel speeds and accuracy. Traditional high-power pulsed wave (PW) lasers are being replaced by high-frequency low-pulse energy fibre lasers. However, as these lasers operate at very high frequencies, near continuous wave (CW) operation, it is not clear the benefit of such frequencies in comparison to CW lasers for micro-welding. In this project, two lasers, one in high-frequency PW and another in CW are operated at the same conditions, including average power, average peak power, spot size and travel speed, and the differences in material response are investigated. It has been shown that frequency is one of the important parameters that affect the heat loss between individual pulses, referred to as inter-pulse losses. At low frequency, the PW laser provided lower melting efficiency and higher penetration efficiency than CW. On the other hand, at high frequency, the PW resulted in lower melting and penetration efficiency than CW. In addition, a new definition of interaction time has been proposed to capture conduction losses by travel speed and heat inter-pulse losses due to periodic lack of laser power. This allows a like-for-like comparison of CW and PW lasers and can be used to predict penetration depth with processing parameters.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Selection of parameters in nanosecond pulsed wave laser micro-welding
    (Springer, 2021-05-31) Coroado, Julio; Ganguly, Supriyo; Suder, Wojciech; Williams, Stewart; Meco, Sonia; Pardal, Goncalo
    The digital control of the latest nanosecond pulsed wave (PW) fibre lasers allows very high flexibility in controlling the application of the total energy to a workpiece, which brings several advantages to the joining process. By choosing different pulse shapes in different spatial profiles, it is possible to apply low energy per pulse with high precision and accuracy resulting in lower heat input. Since the energy of each pulse is insufficient to generate melting, these lasers operate at very high pulse repetition frequencies near continuous wave (CW) regime. Nevertheless, the peak powers of PW lasers are much higher than CW. In this research, the effect of peak power, pulse energy, pulse width, pulse repetition frequency and duty cycle has been studied. The experimental work was conducted in bead on plate of austenitic stainless steel to investigate the effect of laser on the weld geometry, i.e. depth of penetration and width. An empirical model, previously established for CW mode, which enables the achievement of a particular penetration depth independent of the beam diameter, was redesigned and tested for PW mode. The “pulse power factor model” allows the laser user to select a weld profile that meets certain quality and productivity requirements independent of the laser system. It was shown that identical depth of penetration but different weld metal profile can be obtained for a specific beam diameter for a range of different system parameters by keeping a constant trade-off between pulse power factor and interaction time.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback