Browsing by Author "Chen, T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access A branch and bound method for isolation of faulty variables through missing variable analysis(Elsevier Science B.V., Amsterdam., 2010-12-31T00:00:00Z) Kariwala, Vinay; Odiowei, P. E.; Cao, Yi; Chen, T.Fault detection and diagnosis is a critical approach to ensure safe and efficient operation of manufacturing and chemical processing plants. Although multivariate statistical process monitoring has received considerable attention, investigation into the diagnosis of the source or cause of the detected process fault has been relatively limited. This is partially due to the difficulty in isolating multiple variables, which jointly contribute to the occurrence of fault, through conventional contribution analysis. In this work, a method based on probabilistic principal component analysis is proposed for fault isolation. Furthermore, a branch and bound method is developed to handle the combinatorial nature of problem involving finding the contributing variables, which are most likely to be responsible for the occurrence of fault. The efficiency of the method proposed is shown through benchmark examples, such as Tennessee Eastman process, and randomly generated cases.Item Open Access Hyperspectral imaging for the remote sensing of blood oxygenation and emotions(2012-08-22) Chen, T.; Yuen, P.This PhD project is a basic research and it concerns with how human’s physiological features, such as tissue oxygen saturation (StO2), can be captured from a stand-off distance and then to understand how this remotely acquired physiological feature can be deployed for biomedical and other applications. This work utilises Hyperspectral Imaging (HSI) within the diffuse optical scattering framework, to assess the StO2 in a contactless remote sensing manner. The assessment involves a detailed investigation about the wavelength dependence of diffuse optical scattering from the skin as well as body tissues, under various forms of optical absorption models. It is concluded that the threechromophore extended Beer Lambert Law model is better suited for assessing the palm and facial tissue oxygenations, especially when spectral data in the wavelengths region of [516-580]nm is used for the analysis. A first attempt of using the facial StO2 to detect and to classify people’s emotional state is initiated in this project. The objective of this work is to understand how strong emotions, such as distress that caused by mental or physical stimulations, can be detected using physiological feature such as StO2. Based on data collected from ~20 participants, it is found that the forehead StO2 is elevated upon the onset of strong emotions that triggered by mental stimulation. The StO2 pattern in the facial region upon strong emotions that are initiated by physical stimulations is quite complicated, and further work is needed for a better understanding of the interplays between bodily physique, individual’s health condition and blood transfusion control mechanism. Most of this work has already been published and future research to follow up when the author returns back to China is highlighted.Item Open Access Illumination invariance and shadow compensation via spectro-polarimetry technique(Maney Publishing, 2013-06-28T00:00:00Z) Ibrahim, I.; Yuen, Peter W. T.; Hong, K.; Chen, T.; Soori, U.; Jackman, J.; Richardson, Mark A.A major problem for obtaining target reflectance via hyperspectral imaging systems is the presence of illumination and shadow effects. These factors are common artefacts, especially when dealing with a hyperspectral imaging system that has sensors in the visible to near infrared region. This region is known to have highly scattered and diffuse radiance which can modify the energy recorded by the imaging system. Shadow effect will lower the target reflectance values due to the small radiant energy impinging on the target surface. Combined with illumination artefacts, such as diffuse scattering from the surrounding targets, background or environment, the shape of the shadowed target reflectance will be altered. In this study we propose a new method to compensate for illumination and shadow effects on hyperspectral imageries by using a polarization technique. This technique, called spectro-polarimetry, estimates the direct and diffuse irradiance based on two images, taken with and without a polarizer. The method is evaluated using a spectral similarity measure, angle and distance metric. The results of indoor and outdoor tests have shown that using the spectro-polarimetry technique can improve the spectral constancy between shadow and full illumination spectra.