CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chatzistefanou, Athanasios"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Synergetic and performance characteristics of a high-speed pre-cooled propulsion concept
    (ASME International, 2025-02-01) Chatzistefanou, Athanasios; Tsentis, Spyros; Kalfas, Anestis I.
    Pre-cooled air-breathing cycles are promising candidates to power future high-speed flight as well as Single-Stage-To-Orbit vehicles, due to their increased efficiency over contemporary propulsion systems and launch vehicles. These concepts usually feature complex interactions in the synergy of their thermodynamic cycles. In this study, a performance model of such a cycle is developed for its air-breathing mode of operation. One-dimensional thermodynamic modeling is employed within a component-level approach, to evaluate the performance and operation of the cycle under investigation in the range of 1.35 = ≤ 8 = 5 and conditions of up to 26 kilometers altitude. The model is validated quantitatively and qualitatively for both design and off-design conditions. The specific impulse Isp and specific thrust, as predicted by the model, agree within less than 5% for both design and off-design point conditions, while it captures the trend of Isp for the range modeled. Moreover the maximum gross thrust point is predicted correctly at M∞ = 4. The fundamental operating principles and synergetic characteristics of the engine at design and off-design conditions are investigated and reported. A model which does not feature a bypass duct is created and compared for the same inflow conditions and mission profile. It is found that the engine without the bypass duct exhibits reduced specific impulse up to 32% lower at off-design conditions while the overall trend of engine efficiency cannot be properly captured without modeling of the bypass duct, especially at the region of M∞ < 3.5.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback