Browsing by Author "Carpenter, Lucy J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Quantifying the vertical transport of CHBr3 and CH2Br2 over the Western Pacific(Elsevier, 2018-09-12) Butler, Robyn; Palmer, Paul I.; Feng, Liang; Andrews, Stephen J.; Atlas, Elliot L.; Carpenter, Lucy J.; Donets, Valeria; Harris, Neil; Montzka, Stephen A.; Pan, Laura L.; Salawitch, Ross J.; Schauffler, Sue M.We use the GEOS-Chem global 3-D atmospheric chemistry transport model to interpret atmospheric observations of bromoform (CHBr3) and dibromomethane (CH2Br2) collected during the CAST and CONTRAST aircraft measurement campaigns over the western Pacific, January–February 2014. We use a new linearized, tagged version of CHBr3 and CH2Br2, allowing us to study the influence of emissions from specific geographical regions on observed atmospheric variations. The model describes 32 %–37 % of CHBr3 and 15 %–45 % of CH2Br2 observed variability during CAST and CONTRAST, reflecting model errors in vertical transport. The model has a mean positive bias of 30 % that is larger near the surface, reflecting errors in the poorly constrained prior emission estimates. We find using the model that observed variability of CHBr3 and CH2Br2 is driven by open ocean emissions where there is deep convection. Atmospheric variability above 6 km includes a significant contribution from coastal oceans, but it is still dominated by emissions from the open ocean and by older air masses that originate upwind. In the absence of reliable ocean emission estimates, we use a new physical age-of-air simulation to determine the relative abundance of halogens delivered by CHBr3 and CH2Br2 to the tropical transition layer (TTL). We find that 76 % (92 %) of air masses that originate from the ocean reach the TTL within two (three) atmospheric e-folding lifetimes of CHBr3 and almost all of them reach the TTL within one e-folding lifetime of CH2Br2. Over the duration of CAST and CONTRAST, and over our study region, oceans delivered a mean (range) CHBr3 and CH2Br2 mole fraction of 0.46 (0.13–0.72) and 0.88 (0.71–1.01) pptv, respectively, to the TTL, and a mean (range) Bry mole fraction of 3.14 (1.81–4.18) pptv from source gases to the upper troposphere.Item Open Access Surface fluxes of bromoform and dibromomethane over the tropical western Pacific inferred from airborne in situ measurements(Atmospheric Chemistry and Physics, 2018-10-15) Feng, Liang; Palmer, Paul I.; Butler, Robyn; Andrews, Stephen J.; Atlas, Elliot L.; Carpenter, Lucy J.; Donets, Valeria; Harris, Neil R. P.; Salawitch, Ross J.; Pan, Laura L.; Schauffler, Sue M.We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from aircraft observations over the western Pacific using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a maximum a posteriori inverse model. Using GEOS-Chem (GC) as an intermediary, we find that the distribution of a priori ocean emissions of these gases are reasonably consistent with observed atmospheric mole fractions of CHBr3 (r = 0.62) and CH2Br2 (r = 0.38). These a priori emissions result in a positive model bias in CHBr3 peaking in the marine boundary layer, but reproduce observed values of CH2Br2 with no significant bias by virtue of its longer atmospheric lifetime. Using GEOS-Chem, we find that observed variations in atmospheric CHBr3 are determined equally by sources over the western Pacific and those outside the study region, but observed variations in CH2Br2 are determined mainly by sources outside the western Pacific. Numerical closed-loop experiments show that the spatial and temporal distribution of boundary layer aircraft data have the potential to substantially improve current knowledge of these fluxes, with improvements related to data density. Using the aircraft data, we estimate aggregated regional fluxes of 3.6±0.3×108 and 0.7±0.1×108gmonth−1 for CHBr3 and CH2Br2 over 130–155°E and 0–12°N, respectively, which represent reductions of 20%–40% of the prior inventories by Ordóñez et al. (2012) and substantial spatial deviations from different a priori inventories. We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions, as used by previous studies. We find that over regions with dense observation coverage, our choice of a priori inventory does not significantly impact our reported a posteriori flux estimates.Item Open Access Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean(2020-01-31) Filus, Michal T.; Atlas, Elliot L.; Navarro, Maria A.; Meneguz, Elena; Thomson, David; Ashfold, Matthew J.; Carpenter, Lucy J.; Andrews, Stephen J.; Harris, NeilThe effectiveness of transport of short-lived halocarbons to the upper troposphere and lower stratosphere remains an important uncertainty in quantifying the supply of ozone-depleting substances to the stratosphere. In early 2014, a major field campaign in Guam in the western Pacific, involving UK and US research aircraft, sampled the tropical troposphere and lower stratosphere. The resulting measurements of CH3I, CHBr3 and CH2Br2 are compared here with calculations from a Lagrangian model. This methodology benefits from an updated convection scheme that improves simulation of the effect of deep convective motions on particle distribution within the tropical troposphere. We find that the observed CH3I, CHBr3 and CH2Br2 mixing ratios in the tropical tropopause layer (TTL) are consistent with those in the boundary layer when the new convection scheme is used to account for convective transport. More specifically, comparisons between modelled estimates and observations of short-lived CH3I indicate that the updated convection scheme is realistic up to the lower TTL but is less good at reproducing the small number of extreme convective events in the upper TTL. This study consolidates our understanding of the transport of short-lived halocarbons to the upper troposphere and lower stratosphere by using improved model calculations to confirm consistency between observations in the boundary layer, observations in the TTL and atmospheric transport processes. Our results support recent estimates of the contribution of short-lived bromocarbons to the stratospheric bromine budget.