CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Carbini, Eduardo"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An experimental investigation into the influence of installed chevron jet flows on wall-pressure fluctuations
    (InterNoise, 2022-08-24) Carbini, Eduardo; Meloni, Stefano; Camussi, Roberto; Lawrence, Jack; Proença, Anderson
    Jet-surface interaction represents a significant community noise problem for the installation of modern ultra-high bypass ratio turbofan engines. The use of chevron nozzles is known to reduce low-frequency jet mixing noise by increasing the mixing rate close to the nozzle. It is currently unknown, however, to what extent such a nozzle lip treatment affects the Kelvin-Helmholtz instability, generated in the vicinity of the wing, which will modify the source of jet-surface interaction noise. To clarify the physics of the jet-surface interaction noise source, an extensive experimental investigation was conducted using the Flight Jet Rig in the anechoic chamber of the Doak Laboratory, at the University of Southampton. Various measurements were carried out on a round and a chevron single stream, unheated subsonic jet, both in an isolated configuration and installed beneath a 2D NACA4415 airfoil "wing". The wall-pressure field on the wing surface was investigated using a pair of miniature wall-pressure transducers and a set of ultra-thin precision microphones. These sensors were flush-mounted in both the stream-wise and span-wise directions on the pressure side of the wing and the unsteady wall-pressure data were analysed in the time and frequency domains. The far-field noise results show significant broadband noise reduction by the chevron jet. This is further evidenced by a reduction in the span-wise correlation length along the wing trailing edge over a wide range of frequencies. Significant reduction of the tonal trapped wave energy is also observed.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback